ドナウ・ライン川水系の流域管理と自然再生

平成17年3月

（財）河川環境管理財団
河川環境総合研究所
目次

まえがき
1 調査目的---1
2 調査団行程---2
 2.1 調査団行程---2
 2.2 調査団メンバー---5
3 河川事業に関わる枠組み---6
 3.1 ドナウ流域の国際的な枠組み---6
 3.2 ドイツの枠組み---7
4 ドナウプロジェクト---11
 4.1 ドナウ川保全国際委員会（ICPDR）における取り組み--------------------------11
 4.2 ウィーン工科大学における取り組み--18
5 ドイツ連邦水理研究所の取り組み---33
6 バイエルン州における再自然化等への取り組み---47
 6.1 バイエルン州における取り組み--47
 6.2 イザープロジェクト---58
 6.3 MD送水プロジェクト---78
7 ラインラントフルツ州における環境アクションプログラム------------------------83
 7.1 アクション・ブラウ--83
 7.2 アクション・ブラウの具体例--101
8 現地視察結果---121
9 河川事業への取り組みを調査して---133
あとがき

＜資料＞
入手した資料リスト
まえがき

本調査報告書は、財図河川環境管理財団が平成16年10月14～25日にかけてドナウ川およびライン川水系における流域管理・および市の実践例について現地調査およびヒアリングを行った成果を記述するものです。

ドナウ川水系およびライン川水系については、すでに多くの調査団が訪れ報告書の作成を行っており、われわれ調査団が訪問しても、また日本人が来た裕福な国ですねと皮肉を言われるのではないかと危惧しました。そこで、調査内容を水系の管理および河川の自然再生に関する思想的・社会経済的背景とその運営に関する調査にウェイトを置き、出発前に河川管理組織に財団として知りたいことについて質問状を送付し、それに関する討議と現地視察を行いました。幸いなことに受け入れ機関が親切に熱心に対応してくれ私たちの危惧は調査中に消えてなくなりました。

報告書は、なるべく生の雰囲気を出すため、ヒアリングおよび討議内容を編集して会話体としました。
地形・気候・宗教的背景の異なる地域の実情に触れ、調査団として得ることがありました。それが伝えられたらと思います。

平成17年3月

調査団 団長 山本晃一
1. 調査目的

（財）河川環境管理財団では、河川整備計画・河川環境管理計画・河川の維持管理計画の策定業務などを通じて、河川管理・流域管理また改修に伴う河川環境の保全と創造の手法について多くの河川で検討を行っている。その際、個別技術的な手法の確立のみならず水循環や関係機関・市民を含めた流域管理の視点と、その良好な関係性の構築が大きな課題となっている。

本調査では、財団業務の充実に向け、近年ドナウ川およびライン川水系で取り組まれている流域管理の状況やドイツ各州で実施されている自然再生事業に関して、それらの事業の計画論や技術の水準、また実施に当たっての組織論とその責任範囲および国、州、市町村、市民との連携体制について、ヒヤリング・現地調査を通じて実態を把握するものである。
2. 調査団行程

2.1 調査団行程
調査期間：平成16年10月14日～平成16年10月25日
訪問国：オーストリア、ドイツ、フランス

図2.1 全体調査行程
図2.2 調査行程（ドイツ）

赤は空路、青は陸路を示す
<table>
<thead>
<tr>
<th>月日</th>
<th>発着地／滞在地</th>
<th>現地時刻</th>
<th>交通機関</th>
<th>訪問先／調査地</th>
</tr>
</thead>
<tbody>
<tr>
<td>10月14日（木）</td>
<td>東京（成田）発ウィーン着ウィーン泊</td>
<td>11:35</td>
<td>飛行機</td>
<td>フランクフルト経由ウィーンへ着後、ホテルへ</td>
</tr>
<tr>
<td>10月15日（金）</td>
<td>ウィーン滞在</td>
<td>午前午後</td>
<td>地下鉄</td>
<td>◎ICPDR ◎ウィーン工科大学</td>
</tr>
<tr>
<td>10月16日（土）</td>
<td>ウィーン市内ウィーン発ミュンヘン着ミュンヘン泊</td>
<td>17:10</td>
<td>専用バス</td>
<td>ミュンヘン市内観察新ドナウ川分派点等</td>
</tr>
<tr>
<td>10月17日（日）</td>
<td>ミュンヘン発ュルムミュンヘン着ミュンヘン泊</td>
<td>円日</td>
<td>専用バス</td>
<td>ウルムからドナウ川に沿って下流方向へ</td>
</tr>
<tr>
<td>10月18日（月）</td>
<td>ミュンヘン滞在</td>
<td>午前午後</td>
<td>専用バス</td>
<td>◎バイエルン水管理庁 ◎ミュンヘン水管理局Isar川視察</td>
</tr>
<tr>
<td>10月19日（火）</td>
<td>ミュンヘン発ロートバーンベルクフランクフルト着フランクフルト泊</td>
<td>円日</td>
<td>専用バス</td>
<td>◎アンスバッハ水管理局プロムバッハ湖視察マインードナウ運河視察レグニッツ川視察マイン川視察</td>
</tr>
<tr>
<td>10月20日（水）</td>
<td>フランクフルト発コブレンツマイツ着マイツ泊</td>
<td>午前午後</td>
<td>専用バス</td>
<td>◎連邦水理研究所ライン川視察</td>
</tr>
<tr>
<td>10月21日（木）</td>
<td>マイツ発トリアー着トリアー泊</td>
<td>円日</td>
<td>専用バス</td>
<td>◎水管理経済監督庁ライン川視察</td>
</tr>
<tr>
<td>10月22日（金）</td>
<td>トリアー発ケルン着パリ着パリ泊</td>
<td>17:30</td>
<td>専用バス</td>
<td>◎水管理保護局トリアー支部リーザー川視察</td>
</tr>
</tbody>
</table>
表 2.1 日程表（2／2）

<table>
<thead>
<tr>
<th>月日</th>
<th>発着地／滞在地</th>
<th>現地時刻</th>
<th>交通機関</th>
<th>訪問先／調査地</th>
</tr>
</thead>
</table>
| 10月23日（土） | パリ滞在 | 終日 | 地下鉄 | サン・マルタン運河視察
セーヌ川視察 |
| 10月24日（日） | パリ市内 | 20:00 | 地下鉄 | パリ市内視察 |
| 10月25日（月） | 東京（成田）着 | 14:30 | 飛行機 | 解散 |

2.2 調査団メンバー

調査団のメンバーは以下のとおりである。

団長 (財)河川環境管理財団 河川総合研究所長
山本 晃一

(財)河川環境管理財団 河川総合研究所研究第三部次長
山田 浩次

(財)河川環境管理財団 河川総合研究所研究第三部主任研究員
新清 晃

(財)河川環境管理財団 河川総合研究所研究第四部研究員
藤原 基正

パシフィックコンサルタンツ（株）大阪本社水工技術部次長
松田 尚郎

藤原（左から4人目）、松田（左から5人目）、山本（右から4人目）、山田（右から2人目）、新清（右端）

図 2.3 調査団写真
3．河川事業に関わる枠組み

3.1 ドナウ川流域の国際的な枠組み

ドナウ川はドイツのシュバルツバルトに源を発し、オーストリア、スロバキア、ハンガリー、クロアチア、ユーゴスラビア、ブルガリア、ルーマニアを経て黒海に注ぐ、流域面積 817,000km²、幹線流路延長 2,857km のヨーロッパ第 2 位の国際河川である。上流部のドイツ及びオーストリアでは深い河谷を形成し、ハンガリー及びユーゴスラビアでは主に低地を流れ、河口のユーゴスラビアに大三角州（ドナウデルタ）を形成する。

図 3.1 ドナウ川流路
3.2 ドイツにおける河川事業の枠組み

(1) ドイツの概要
ドイツ連邦共和国はヨーロッパの中央部に位置し、東と西、そして南と北を結ぶ要となっている。人口はヨーロッパで最も多く、1990年の両ドイツ統一以来、9つの国に囲まれている。領土はおよそ35万7000km²で、日本の約95%に相当する（日本領土はおよそ37万8000km²）。北から南まで直線距離は876km、東西では640kmである。ドイツの人口は現在約8260万人となっている。

気候は、大西洋気候と東部の大陸気候との間の、適度に涼しい偏西風帯に属する。激しい温度変動は稀で、降水も年間を通じてある。年間降水量は北部で500〜700mmと日本に比べ少なく、中部地域は700〜1500mm、南部は高山帯であり2000mmを超す。冬季の平均気温は平野部で1.5℃、山岳地帯でマイナス6℃である。7月の平均気温は、平野部で18℃、南部の谷間では20℃である。例外としては、上部ライン地溝帯の極めて温和な気候や、定期的にフェーン現象が起り、アルプスの温かい南風が吹くオーバーバイエルン地方があり、また、風の強いハルツ山脈一帯の気候は、涼しい夏と雪の多い冬というこの地方独特のものである。

ドイツは16の州に分かれている。各州はそれぞれ国家としての責任を担っており、中には国としての長い伝統を持つ州もある。ドイツは昔から常に領邦に分かれた国であったが、ドイツの地図は、数百年に亘る歴史の中で幾度もその姿を変えている。現在の諸州は1945年以後に設けられたが、古くからの地域的なまとまりや、歴史的な境界線も一部考慮されている。1990年のドイツ統一以前のドイツ連邦共和国は、当初は11の州からなっていた。一方、東ドイツにあたる地域に戦後誕生した5つの州は、1952年に14の県に再編成された。1990年3月18日の東独初の自由選挙を経て、東独地域に新たに5つの州を設けることが決まった。この5州は1952年以前の5州とほぼ同一である。1990年10月3日、東ドイツの5州がドイツ連邦共和国に加盟した。また東ベルリンは西ベルリンと統合

![ドイツ連邦と州の図](image.png)
図3.2 ドイツ連邦と州
された。

表 3.1 にはドイツにおける主な河川、運河、湖沼を示した。

<table>
<thead>
<tr>
<th>順位</th>
<th>河川名</th>
<th>延長 (km)</th>
<th>運河名</th>
<th>延長 (km)</th>
<th>湖沼名</th>
<th>面積 (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ライン</td>
<td>865</td>
<td>ミッテルラント</td>
<td>321</td>
<td>ポーデン</td>
<td>305</td>
</tr>
<tr>
<td>2</td>
<td>エルベ</td>
<td>700</td>
<td>ドルトムント・エムス</td>
<td>269</td>
<td>ミューリッツ</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>ドナウ</td>
<td>686</td>
<td>マイン・ドナウ</td>
<td>171</td>
<td>キーム</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>マイン</td>
<td>524</td>
<td>北海・パルト</td>
<td>99</td>
<td>シュヴェリーナー</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>ヴェーザー</td>
<td>440</td>
<td></td>
<td></td>
<td>シュタルンベルガー</td>
<td>57</td>
</tr>
<tr>
<td>6</td>
<td>シュプレー</td>
<td>382</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>モーゼル</td>
<td>242</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) 治水事業の枠組み

ドイツにおける法体系は、包括的な連邦法と実務的な州法で構成されており、河川管理と治水事業については連邦と州にそれぞれ水管理法（Water Act）が存在する。ライン川やドナウ川などの国際河川は連邦水路と位置付けられ、連邦法はこの連邦水路と一級河川、州法は二級河川と三級河川が対象となっている。

連邦水路と一級河川の治水対策は全て州に委任されており連邦は関与しない。例外もあるが原則として二級河川、三級河川は市町村が管理を行っている。

(3) 行政組織の枠組み

ドイツにおける行政制度の枠組みは、連邦、州、上級地方行政区、郡（特別市）、市町村という 5 段階となっている。市町村は地域社会のほぼ全ての事務を担っており、都市計画の策定・実施、道路・上下水道の整備、教育・社会福祉等を担当する。郡は市町村連合体の性格を持つ公選による郡長がおり、市町村事務を補完し、広域的な公共交通や住宅建設、社会保険などを担当する。人口 2 万人以上の市町村は特別市の指定を受け、郡の事務についても処理している。地方行政区は州の出先機関を担っている。

(4) 連邦の役割

連邦政府が実施する河川事業は、連邦水路の維持管理であり連邦運輸省が管轄している。これ以外の河川事業は、州または市町村が担当する。治水については連邦水路も州が担っている。連邦政府が治水に果たす責任は連邦環境省を中心として、洪水被害に対する救援、洪水被災者への経済支援、総合ライン川計画（フランス政府との合意に基づく計画,1982）の実施に限られている。
主な管理事項と連邦政府機関を表3.2にまとめた。今回訪問したコブレンツにある連邦水理研究所(bfg)は連邦交通省の下部組織になる。

表3.2 主な管理事項と連邦政府機関

<table>
<thead>
<tr>
<th>管理事項</th>
<th>担当官庁</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>水資源管理</td>
<td>① 食料、農業および森林連邦省、連邦交通省、連邦厚生省、連邦調査技術省、連邦経済省、連邦経済協力省</td>
<td>水処理・供給</td>
</tr>
<tr>
<td></td>
<td>連邦交通省</td>
<td>水路交通</td>
</tr>
<tr>
<td></td>
<td>連邦厚生省</td>
<td>飲料水の管理</td>
</tr>
<tr>
<td></td>
<td>連邦調査技術省</td>
<td>水文分野の研究</td>
</tr>
<tr>
<td></td>
<td>連邦経済省</td>
<td>経済分野</td>
</tr>
<tr>
<td></td>
<td>連邦経済協力省</td>
<td>他国との協力</td>
</tr>
<tr>
<td>連邦水路の航行管理</td>
<td>連邦交通省</td>
<td></td>
</tr>
</tbody>
</table>

(5) 州の役割

州の河川管理に関する統括機関は州の環境省であり、このもとで地方行政毎に河川の維持管理と治水事業に関連する組織がある。維持管理には環境分野の他に治水や利水、上下水道に関する内容も含んでおり、治水の責任は基本的に州が負っている。二級、三級河川は市町村が治水事業を実施する。

(6) 治水事業に関する法律

連邦における治水事業、河川管理に関する法律を表3.3にまとめた。

表3.3 連邦における治水事業、河川管理に関する法律

<table>
<thead>
<tr>
<th>法律名</th>
<th>主な内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>水管理法</td>
<td>- 1960年に施行</td>
</tr>
<tr>
<td></td>
<td>- 水資源に関する基本法</td>
</tr>
<tr>
<td></td>
<td>- 連邦全体に統一的な排水基準を規定</td>
</tr>
<tr>
<td>連邦水路条例法</td>
<td>- 1968年に施行</td>
</tr>
<tr>
<td></td>
<td>- 航行河川を連邦水路と位置付け</td>
</tr>
<tr>
<td>国土計画法</td>
<td>- 国土全体に係る土地利用を規定</td>
</tr>
<tr>
<td></td>
<td>- 環境と都市計画との整合性を審査する手続きを規定</td>
</tr>
<tr>
<td></td>
<td>- 環境アセスメントの具体的手法は州法に委ねる</td>
</tr>
<tr>
<td>行政手続法</td>
<td>- 行政手続きの統一化</td>
</tr>
<tr>
<td>環境適合性に関する法律</td>
<td>- 1990年に施行</td>
</tr>
<tr>
<td></td>
<td>- 計画許可決定段階における環境アセスメントに関する行政手続き</td>
</tr>
<tr>
<td>連邦自然保護法</td>
<td>- 動植物の保護</td>
</tr>
<tr>
<td></td>
<td>- ビオトープに関する規定</td>
</tr>
<tr>
<td>連邦水収支法</td>
<td>- 生態学的な要求に対する配慮</td>
</tr>
<tr>
<td></td>
<td>- 景観、保養空間、浄化能力の維持</td>
</tr>
</tbody>
</table>
回避できない場合の代償・代替措置の考え方が細かく規定されている。今回の訪問先においても、当該法に基づきより環境への影響を低減する対応を行った事例の紹介を受けた。

(7) 財政制度
治水事業にかかる費用は州により異なるものの、原則として連邦水路と一級河川は州が負担し、二級、三級河川は市町村が負担するが、財政能力に配慮して州が70%までの補助を与える。
連邦政府の負担は、連邦共和国基本法に「連邦および州は、・・・その任務を引き受けたことによる経費を別々に負担する」と規定されている。委託行政について連邦が負担する経費は、委託目的関連費と呼ばれる費用で、具体的には連邦道路の建設を連邦が州に委託した場合を例にとると、道路建設費が委託目的関連費となりこれを連邦が負担するが、この道路建設に要した州組織の人件費、事務費は州の負担となる。
この他、連邦による公共投資の財政援助があり、これは州や市町村が直接行う公共投資のみならず、第三者に対する州・市町村の投資補助金も対象となる。財政援助の形式は補助金および貸付の両者を含む。ただし、援助を行うには、①経済全体の均衡愚化の防止、②地域間の経済格差の調整、③経済成長の促進、のいずれかの条件を満たす必要がある。
堤防組合の財源は、洪水防御税や排水課徴金、維持管理費税が当てられ、堤防によって防御される区域の建物所有者は別途堤防補修費を負担する。組合予算のうちの80%は補助金が占めており、この内訳は州と連邦が50%づつ負担する。

参考文献
・ドイツ大使館ホームページ
・ドイツの水法と自然保護，財団法人日本生態系協会，1996
・欧米諸国における治水事業実施システム，財団法人国土開発技術研究センター，1997
4. ドナウプロジェクト

4.1 ドナウ川保全国際委員会（ICPDR）における取り組み

【ICPDR】ドナウ川の流域について概要を説明します。ドナウ川は、EU地域で第2位の規模の河川です。その流域面積は、約80万km²、18カ国の国に及びます。その約80万km²の流域内、約29%はルーマニアであり、一番大きなエリアを占めています。オーストリアは約10%で流域面積では18カ国中、4番目に大きなエリアを占めています。[(図4.1)]

ドナウ川流域の降水量は、アルプスの辺りは2,000mmくらいあります。これは降雪が多いということだけではありません。2002年の8月には、山岳地帯の降雨によりドナウ川で大きな洪水がありました。ドナウ川自体が洪水になる確率を考えますと、アルプス山岳地帯の降雨によることが多いためです。EUの水枠組指令プロジェクトには、黒海の沿岸地域もドナウ川として組み込まれています。

図4.1 ドナウ川流域の図々

これは降雪が多いということだけではありません。2002年の8月には、山岳帯の降雨によりドナウ川大洪水がありました。ドナウ川自体が洪水になる確率を考えますと、アルプス山岳帯の降雨によることが多いかもしれません。

EUの水枠組指令プロジェクトには、黒海の沿岸地域もドナウ川として組み込まれています。
国中13カ国が参加しており、残る5カ国は参加をしていませんが、ドナウ川流域に係わることに関して協定を結んで管理を行っています。

その協定は、ドナウ川保全協定（DRPC: The Danube River Protection Convention）といい、1994年6月ソフィアで結ばれ、常設事務局を設置し、7カ国で構成され、これに10個の専門機関がオブザーバーとして参加して、ドナウ川に関する警報システムや監視システムを整備しています。（図4.2、図4.3）

ドナウ川・黒海では1990年代頃、栄養化の問題が多く、黒海沿岸地域で特にひどかったものです。ドナウ川と黒海とのジョイント部での問題に関して行う技術専門組織である土木

図4.2 DRPC オブザーバー

図4.4 ドナウプロジェクトの組織
委員会という別組織があり、それと協力して富栄養化の問題や汚染に関する活動に参加しています。

ここで、ドナウ・プロジェクトについて簡単に説明します。

国際協力プロジェクトは3つしかありません。長期間的な目的というのは、60年代の状況に戻すというものです。また、90年代に始まった富栄養化問題も削減していくことです。これがだいたいの構想ですが、ドナウ川はドナウ川のメンバー、黒海は黒海のメンバー、それから大きなプロジェクトについてドナウ川側と黒海側が一緒になっております。（図4.4）

これらの組織はドナウと黒海の共同の課題を実施していくためのプロジェクト、政策や投資プロジェクトや財政面、それらの点を明確化していくことを目的にしています。

具体的には実際の排水処理状況、その処理プロジェクト・政策を開発していくことや市民の参加意識を高めるということです。それと監視強化プロジェクトです。（一例：図4.5）

これは2段階に分けて計画しており、今ちょうど1段階で計画したものを実施している状況です。

【財団】かなり大きな組織で行っているようですが、フル回転で働いている時期は、専門委員の方はどれくらいの人がいましたか。また会議をかなり開かないと組織が動かない感じが

図4.5 下水処理事業の優先度
しますが、かなりの頻繁で意見交換をしているのですか。

【ICPDR】国を代表した機関やオブザーバー機関などあり、それぞれの利益があります。それぞれ専門機関ごとに年に 2,3 回程度会議を開いています。国際委員会などは年に 2,3 回、本会議ですと、12 月中旬以降にありますがその時は環境大臣などが参加します。

今年はドナウ・プロジェクト協定調印 10 周年にあたり、特別な年であります。これを機会にドナウ川宣言みたいなを作って発表したり、いろいろな活動を評価していきたいと検討しています。

この協定の第 9 条にある水質の地域管理について、監視モニタリングについては国際協力を実施しなくてはいけないということが各地域に伝わり、今、地域管理で監視、実験、情報管理等の専門委員会がグループとしてやっています。

監視にあたり目標値等の評価方法は、区画分けて、黒海のところが目標値がプラス評価なっており、ドナウ川がその目標値に近づけているところです。目標値には法的拘束力はないと、地域では EU の指令と調整して決めています。

【財団】それは上流から下流まで同じ水質目標ですか。

【ICPDR】ドナウ川本川については上流下流も同じですが、本川と支川の違いということで、

図 4.6 硝酸性窒素の濃度ランク
妥協案があり、水質の違いよりも水源地の違いにより変えていますが、これも法的拘束力がありません。

これが窒素酸化物がどれくらいあるかというサンプルです。（図 4.6）白いのはデータが提出されていない所です。これは、中央委員会で実施している測定ではなくて、それぞれの国からのデータが提出されているものなので、出ていないところが多いです。国によっても複雑な実験でデータを出せないといっています。特に白い地域というのはユーゴ戦争があった国なので、爆撃にありましたり監督所がなかったりなどの問題があります。

提出されたデータは、ここでコントロールしています。そのデータは、信頼できるものだということで検査しています。それぞれ 33箇所から貰ったデータを分析、評価するので確かなものを見認めています。

これは窒素の流出量です。（図 4.7）濃度ではなく流出量ですけれども、主な重金属について年に 24 回ほど調査しています。常にデータを出すようにしています。年間報告も毎年出していますので、ホームページでもダウンロードできます。

Annual loads of inorganic nitrogen at monitoring stations along the Danube River

図 4.7 窒素流出量

それぞれ基準やデータの違うので、6年間の中には何か研修体験や研修旅行みたいなものを行い基準等を統一していきたいと考えています。また新しいパラメータや検査項目などやメ
ニューに入ってないものを検査して、なるべく均一的なデータを収集するようにしています。
それぞれ国の合同調査会のようなるものは 2001 年に行われたあと 2007 年に行われます。例えば微生物の汚染状況でも、時間を置かずにすぐ船の上ですぐに検査を行ってますので、正確なものが取れます。（図 4.8）
【財団】その船でやっているラボラトリーというのは、どこに属しているのですか。
【ICPDR】この研究所ではラボラトリーは持っていませんが、それぞれの国のものを使って、プラットホームとしてまとめます。

事故による川の汚染地域ですが、これは事故防止管理のグループが行っていますが、警報システムや事故による公害の状況や危険度などを評価しています。

災害緊急警報システムが、流域にそれぞれ設置されています。PIAC（Principal International Alert Centres）という国際警報センター本部がありますが、そこが全部管理しています。サテライトが一気システムとしてはよいですが費用が高いので、今は、インターネット上で GPS を使ったシステムで情報を流しています。どんな危険度か、どう対処をしたらよいのかが、大体わかるよう一覧になっています。

その情報管理だけではダメで、防止をしていかなければならないです。災害防止のために、危険地点をリストアップしており、それをを中心に管理を行っています。その危険地点の分類ですが、現在稼働している工場施設の危険度がランク付けされています。後は、汚染地域です。洪水地域にある汚染地域において稼働している工場、そこは直接排水を出す危険性があるということです。

もひとつ汚染地域は、普通の状態では大丈夫ですが、工事のときにその汚染物が流れ出

（図 4.8 ラボの状況）
る危険があるところです。

1 つの国の中で危険と思っていても、他の国は危険と思わないということがあるので、同じ基準を作ることが必要です。たとえばチェックリストを整理しています。これが、その汚染地区の分布図ですが、まだデータが来ていないところもあり完全ではありません。

国際協力の中でドナウ川が、持続的な水利用できることが大切です。そのプロジェクトは 2005 年がデッドラインだったのですが、2000 年に大きな洪水があったため、その機会に色々な活動がスピードアップして、今年の 12 月には承認される予定です。

こういった行動計画では大きな骨組みを作っていますが、この洪水対策行動計画は EU 委員会でも承認されています。その計画の中では災害防止ということからリスクマネージメント、危険管理という方に流れが移っています。上流の方が下流の方の洪水に全然無頓着ではなく、流域全体が一体となって対応しています。

【財団】工場のリスク評価について、評価基準は ICPDR が作ったとしても、工場の個々の負荷は国で測定しているのですか、それとも工場が情報公開で出しているデータを使っていませんか。

【ICPDR】国が行ったりその工場が行ったりとバラバラであり自己申請になっています。それこそ、国によってですから、データはその国の基準やその工場の基準で出してくれるので、それらを統一したデータにするための基準をここで作っていますので、こちらから派遣して何かをデータを取ってくるとかではありません。

おっしゃる通り、全部のデータが正しいものを出してくるかというとそうではなく、危険性があるということが前提になっていて、それぞれの数量を出してきますので、ある程度の危険度までは査定できます。しかし、危険物質の量そのものがどれくらいあるのかというのも、まちまちであったりするので、その国によって危険対策がとられていないところもいっぱいあります。強制的にデータは取りにくいですが、法律でも EU 指令でも決められているので、出さざるを得ないのでです。

共同行動計画を実施して行き、その後は色々排出目録などをアップデートしていきます。地方自治体、その他工場、農場、農業に関することなども含めています。

その内容は、汚染源に関する統一した調査方法など EU 規制に沿ったものですが、最初は削減していく内容になっています。今、農業や工業、産業について必要な技術のガイドラインの開発をしています。

今後の行動では、何を最初に実施していくかというのを、各政府に対してサポートすることです。環境管理システムなどを推奨しています。警報システムや、水質管理、公害削減など、ジョイントアクションプログラム、行動管理計画には含まれていることです。後は、自然景観の回復などの基準事項の確認です。
4.2 ウィーン工科大学における取り組み

訪問機関：ウィーン工科大学

(1) ドナウプロジェクト

【工科大】この研究室は2つの部署に分かれています。一つは水管理です。もう一つは廃棄物の部署となっています。こちらの部署ですが、排水処理に関することと、それからもう一つはドナウ川の流域に関する水質管理を中心にしています。

3年前からこの研究室で一番大きなプロジェクトとしては、ドナウプロジェクトです。私たち4人全員が参加しています。そのプロジェクトについて、今からご説明したいと思います。

このプロジェクトはEUの第5次枠組みプロジェクトの中の一環として行われています。この第5次枠組みプロジェクトというのは、緊急プロジェクトの推進などを行っているところです。今、この研究プロジェクトの推進ということで、重点的な研究を行うということを目的としています。

そのプログラム計画の中で特にドナウ川流域の水質管理、水源管理という事を中心に行っています。このドナウプロジェクトというのには、私たちの研究室に加えて、他に17機関の機関も参加しています。

2001年から開始していますが、財政、資金援助というのはEU欧州委員会から出ています。今、参加している国は7ヶ国です。

私たちのプロジェクトの目的は、富栄養化の原因となるもので、川への影響ですとかを状況把握（現状把握）して、それから改善策を立てるなどをしていくための研究活動です。

3ヶ国リストアップしていますが、ドナウ川の流域にない国、例えば、オランダですとかギリシャですとかも参加しています。そういったプロジェクト参加によって知識を色々交流したりして自国でも利用して行きません。

すべてのドナウ川流域の国が参加している訳ではないですが、だからと言って、参加していない国と全く無関係な訳ではなく、間接的にデータを入手した図4.9 ドナウ川流域図
りしながら協力関係にあります。

今、この地図（図 4.9）をご覧になればわかると思うのですが、ドナウ川は、ヨーロッパで２つ目に大きな川で、地理的にはこんな位置づけにあります。この流域の面積は約８１００万 km²、人口は約５，５００万人です。ドナウ川は黒海に流れ出ているので、一番影響が出やすいところは、黒海の沿岸、西部の方に影響が出やすいということです。

これは黒海のデータですが、流域の面積、人口、表面の面積、それと平均の水深です。

このちょうどドナウ川の影響を一番受けやすい西部の地域、この辺りは他の黒海全体と比較するとだいぶ特徴が違います。北黒海というのは非常に深い海ですが、西部のあたりは約１４０m程度で、ブルガリアの辺りは７０m位しかないです。その黒海西部の辺り、生物が繁殖するのに非常に色々な条件が揃っています。

流域には１３ヶ国の国が含まれており、約２，０００キロメートルの面積になります。北黒海を中心に、ドナウ川の他に、ドニブル川やドン川流域を一緒に表現した地図です（図4.10）。

この黒海の西部の辺りですが、黒海全体の内の７０％ほどの栄養化物質が溜まり込んでいる辺りです。同じで水質保護をして行く上で一番難しいのは、各国の経済力の違いということです。それが障害になっていて運営に差し支え、問題になっているところであります。

こちらのプロジェクトでは、栄養物の管理・監視マネージメント、黒海の流出対策（流出削減対策）を行っています。なぜそう研究というのが大切なのかというと、この栄養物が長距離で、国を越えてどんどん運ばれて行ってしまう点です。この栄養物による水への影響は、地域的な問題ではなくて、川によって広範囲に広がっている問題ですので、取り組む必要があります。沿岸諸国は、栄養物の影響を受けやすいところです。特に７０年代から始まって、７０年、８０年、９０年代にかけて、西部の辺りでの栄養化による影響が非常に深刻になってきました。

特に藻の繁殖が問題になったことがあります。毒素を含んだものが繁殖したというのが多くありました。

図 4.10 黒海周辺の河川流域
黒海沿岸地域での富栄養化の問題は、いくらドナウ川の辺りで色んな対策を講じても、削減しきれないことが多いものです。ドナウ川の交通で、船によって何か付着したまま海に流れ込んだりして、そういった影響があると思います。
地下水や地質に含まれる蓄積状況も、非常に影響して行きます。市民生活、経済活動でも栄養化に何かの形で影響している訳です。
すべてこうした現状を目で見える形で表現して行く為に、規範を作っていっています。まず、3つの柱を作りましたが、排出という観点から見て、農業によるもの、栄養や生活様式によるもの、経済状況によるものなどの排出関係があります。
人による排出が廃棄物の排出形になり、それが公害物質になって、貯蔵したり変化して運ばれて黒海に流れ行く。その際、富栄養化が問題になるのが、窒素・リン・シリカでしょう。富栄養化によって経済的にも打撃を与えますし、人の生活にも悪影響を与えかねない問題にもなります。

これは私達のプロジェクトのコンセプトをチャートに表わしたものです。研究分野として3つに分けています。（図4.11）
まず、栄養分の収集とか、流出状況ですかとか、変化によるその地域に与える影響などの調査です。これらの過程状況を把握した上で、数学的な方法を用いて、影響を数量化することです。これら色々な問題に対応して行くために、色々な方法（モデル）を組み合わせて対処して行くということです。
次のモデルは、ドナウ川の水質モデルです。その貯蔵状況などやドナウ川や支川との流出状況把握です。特別にドナウ、三角地域の状況を1つだけピックアップして、その辺りの影響を調べます。
最後のモデルというのは、ドナウから黒海西部に流れ出るその辺りの数値化ということです。
最終的にいくつかのシナリオを作り上げていく訳ですけれども、どのような影響、可能性などを描き出し、解決策を作り出す一つの根拠となるようにして、その解決策によって経済的に与える影響を削減するということです。
このプロジェクトはだいぶ最終段階にさしかかっていますが、いくつかの結果も出ていま
す。あと半年間あるので、これからまだいくつかやることも残っていますけれども、だいたいの結果を発表いたします。

(2) ドナウプロジェクトの成果
【工科大】ドナウ川は、黒海沿岸の富栄養化が最大の原因であるということは間違いないとわかっていますが、それでも90年代頃の非常に悪い状況からかなり改善されたということがわかりました。栄養物質が多いということは、富栄養化が進むということなんですが、海底のほうで酸素不足が起こるという状況が改善されたということです。あと、底生生物も黒海の方でまた繁殖し始めました。（図4.12）

c 数年、グラフでもわかりますが、動物の生態系の復活や種の多様性というものがまた復活してきているということです。

先ほども言ったように、生命の方での嫌気性状態が減って、60年代の状況に戻りつつあるということです。黒海海底の低酸素状態の移り変わりを図にしてみました。（図4.13）96年ではまだ酸素がどんどん消費されている状況であったが、それがだいぶ減って低酸素状態が改善されて、2002年、2003年の状況も改善されているって

図4.12 底生生物の種類数の経年変化

図4.13 黒海西部海底のDO変化
いうのがわかっていま
す。
魚の数が変わってい
ないのは、漁業活動が
活発になって、魚を取
る方が多いということ
です。
どうしてこれ程まで
に改善が進んだかとい
う理由ですが、それは
いくつかあります。
90年代の辺りから
のリン流出がだいぶ減
りました。図4.14
窒素の場合は20%減りました。ルーマニアの地域は、特にリンの流出が多かった訳ですが、
それが減ったことがわかりました。
今、リンの排出が減ったということですが、まず一つ改善の理由となっています。特に黒海西
部では、リンと窒素の割合がちょうど藻の繁殖がしきれないよう状況にあるということです。
窒素の流出量は、80年代をピークに下がり始めています。リンについても同じような状況
です。なぜその栄養物質の流出が減ったかということですが、最大の理由は経済危機です。
90年代初頭の経済危機があったということです。
その経済危機に伴って、肥料の生産工場や肥料の使用率、それから家畜、農場の閉鎖など
が影響されています。東欧
圏のブロックの経済崩壊が
大きな原因です。
まず、肥料の使用が減っ
たことで栄養物質の流出が
減りました。それから肥料
の生産が減ったというのは
工場廃棄物（排出物される
物質）が減ったということ
です。それから農場の閉鎖
では、家畜のし尿が減った
ということです。
その内のリンの流出が減ったというのは、リンを含まない洗剤の使用がオーストリア、ドイツで始まったということです。他の国でもだんだん使用が勧められてきています。

その他にも、浄水場や下水処理場でのリン・窒素の除去が、オーストリア、ドイツ、チェコでも進められています。国ごとに、肥料の使用量を表現していますが、60年代は非常に多いですが、91年に急に減っています。（図4.15）

この91年に減ったのは、わざとこういった政策を取った訳ではなくて、経済危機により自然にこういった訳です。

今、これからどのような対策を取って行くか、それから、今の良い状況をどのように保って行くか、それからどこを改善すべきか、すべて排出源をつきとめることにかかっています。これは各国の人口比率で示したものです。下水システム整備状況、あるいは浄化設備の整備状況です。（図4.16）オーストリアやドイツは、90%、80%の高い比率で、各世帯が下水施設、システムに整備されており、浄水システム整備があるかということです。特にドイツとオーストリアでは、リンと窒素を排水から除去するというシステムが浄水システム（浄水施設）にちゃんと組み込まれています。その他ドイツ、オーストリア以外の国では、まだこのようなシステムの普及率が低い所が多いです。それに、浄水場という施設がなく、水が浄化されずに川に流されているケースが多い地域があります。

そういった国々での浄化施設は、炭素を浄化する技術はあっても、リンや窒素を除去する技術までには至っていません。だいたい年間700kt（70万ton）の窒素の排出量の中の22％が下水排出の中に含まれています。（図4.17）
農業が一番の排出源になっている訳ですが、その他 1/4 は農業を行っていない量です。一番効果があると思われるのは、農業活動による削減手段をとることです。残りの 10%弱ですが、交通・自動車廃棄ガスや焼却による窒素排出です。ダイオキシンなども含まれていますが、そういったものが 10%弱を占めています。

これは、リンの状況ですが下水排水に懸けて流れていく量が 45%だと、窒素に比べて非常に割合が大きいです。（図 4.18）

これは、窒素の発生率をチャートで表わしたものですが、この方の赤い方が非常に排出率が多いという所です。一つには農業が盛んな所、もう一つは、降水量・降雪量の多い所、というファクターが重なって高くなっているということです。現在量だけ測るのではなく、影響力を査定してどこを削減していくべきかを見極めていく必要がある訳です。

（図 4.19）

もしも、黒海西部の富栄養化の対策を講じなかった場合、何が起こるか、どんな影響が出るかという経済の向上・発展度に影響してくれる訳です。これからも持続的な發展を続けていく為にも、農業を再び回復させに行くことが必要になってきます。将来的には、持続的な農業活動を進めていく事で、狐栄養化にあまり影響しないような形に変えて、改革していくことが必要ではないかと考えています。特に、経済発展ばかりに目を向ける訳ではなく、流出自体どのように減らして行くべきかというのを中心に考えていくことも必要です。

ドナウ川流域への窒素の流出状況と貯蔵状況は、先ほど言いましたが 700kt/年の流水・流量があります。ドナウ川から黒海に懸けて流れて行く量は 422kt/年です。34%は小さな支流なんかで地表面水として流れて行きますので、大きな流れには組み込まれていません。
あとは三角州に溜め込む量は2%位でしかありません。（図4.20）
リンの場合は70kt/年ほど流れ行く訳なんですねけれども、最終的に黒海に流れて行くのは35%程です。50%近くが小さな川ですから、川岸なんかに流れて行きま
す。三角州の方には1%と少ないので、ダム貯水池などには11%程になります。（図4.21）
このプロジェクトの目標は、人間の営みから排出された物質が、どのような影響を与えるかを描き出して行くことです。その直接のきっかけになったことは、富栄養化が90年代から黒海のあたりで始まり、それが顕著であったということ、それがまた拡大して行くということから始まりました。
もちろん、私達の現在の活動というのは、研究活動が主なんですが、その他にドナウ川保全国際委員会への影響力を強めていくということです。
それから、協力機関17機関あるのですが、一緒になって欧州委員会のプロジェクトに参加しているということです。財政支援はEUから受けていますが、EUの第5次計画プログラムというものの一貫です。もちろん、参加している17機関も自分達で自己の費用負担しなければいけません。EUが拠出しているのは50%位です。
その他に、先ほどのドナウ川保全国際委員会から色々な情報を提供してもらっています。このプロジェクトで一番主な役割を果たしているのは、大学、それから国立の研究機関、それからもちろん個人企業・民間企業もあります。コスト負担額ですか、課題の分担とかは、それぞれプロジェクト毎に機関がお互いに話し合って決めています。
今後の課題ですが、今まで作り上げたシナリオをもうちょっと細かく見て行って、それで黒海の富栄養物質の流出量をきちんと把握すること、それから、それによる経済的な影響を
きちんと分析して行くことです。

この写真ですけれども、プロジェクトに参加している方の集合写真です。（図 4.22）これで私の説明を終わりにしたいかと思います。ありがとうございました。

【財団】とてもわかりやすい説明でありがとうございました。教えていただきたいのですが、プロジェクトの目的が黒海の富栄養化の改善ということが目標になっているようですが、それが最終目標でしょうか。

【工科大】そうとも言い切れないので、富栄養化の問題が全部解決されたからです。Scheduled the 2019 ending, the change is not
というのではなくて、ドナウ流域や黒海地域などの経済発展です。経済発展をさせながらも排出を減らす、排出の少ない形態を持って行く、それが長期の目的です。

ここは大学の研究室ですので、人間生活から生まれてくる色々な問題、それを理解した上で対策を講じていくための土台を作るということであって、様々な知識を蓄積させていくということが、目的といえば目的です。

もう一つ付け加えたいのですが、EU レベルで、例えばまだ利水の普及率の少ない国々が、すべて 100% 近くまで達した場合、その時に起こる問題というのも含むある訳で、水質管理、浄水、農業活動それらの改善をされた後の課題、問題というのはまだまだある訳です。また、60〜80 年代みたいな農業が活発になって、それがまた問題を起こしかねない気がいつもあります。

これまでに成果としては、一つの手段を開発した、その手段というのは、その物質が、発生源から黒海まで流れ出て行く、到達するまでの数量化に成功しているということです。

【財団】的確なモデルを作り上げたことが成果と考えているのでしょうか。

【工科大】基礎的にはできている訳ですけれども、それにまたどんどん新しい情報が加わってきます。ですからこのモデルをどんどん改善させて行く必要があります。

【財団】これだけの人数で行うには、それぞれモジュール化して実施し、最後に寄せ集めて組み上げる必要があるのですが、その作業をこのグループが行っているのですか?

【工科大】グループは 4 分野に大きく分けられ、まず一つは物質の発生から黒海までの流れというものをウォッチするモデルを作るように。それから黒海での現場でのモデル。それから大変小さいのですが、農業の影響に関するそれを調べるグループ。それから四つめに経済専門分野で色々な情報をまとめる形をとっています。
こういった色々な分野から集まっている研究ですから、それぞれの分野ですね、生物学、経済学、物理学、科学それぞれの専門用語があります。ですから、言葉の問題というのが一番大きくなります。その問題を解決するために、1年に1回大きなワークショップを開いていまして、後は小さなグループでワークショップを開いて、情報交換、それからお互いの分野の理解を深め合っています。だから非常に難しく簡単なプロジェクトではありませんでした。

ちょっと一つ提案というか、こんなこともあるという事をお話ししたいんですが、次にEUに第6次計画があります。そこでは、東アジアの方、東南アジアの方とのプロジェクトを作って、川を2つとって比べたりして協力して研究していくというプロジェクトがあります。そういったことで私達の経験を日本でも生かして行っていたような、そんなものにも参加されてはどうかなどと思っています。できたらいいなと考えています。

【財団】そういう話しが必要であるのでしょうか？

【工科大】だいたいの事は決まっているんですねけれども、ちゃんとした決定は来年の春になります。色々な課題について、国際レベルでプロジェクトを進めて行くというのは決まっていて、アジア、特に東アジアで、それが東南アジアになるかは分かりませんが、アジア地域とやるということは決まっています。

この第5次計画の中では、このプロジェクトは成功した部類に分けられますが、全部が全部ヨーロッパで、こういうプロジェクトが成功しているかというとそうではありません。特に経済分野ですが、こういった研究による理論、成果を、実践していくためのツールも今後必要になって行きます。

【財団】国際的な取り組みとなると関係各国が参加してくれるかどうかが問題となりますが、今回どのように進めめたのでしょうか？

【工科大】なぜこういった国際プロジェクトが成り立つかということですね、東ブロック圏の崩壊ということで、一つの壁が落ちたということがありました。あと、そこで共産圏だった国が国際的なドナウのプロジェクトに参加しようという動きがあったということです。ドナウ川は歴史的にも古く、東西を結ぶ非常に重要な川だったため、伝統的に自然に参加してきたという事です。あと、このプロジェクトが始まる前に、色々なプロジェクトがあって、その中でも例えばハンガリーにコンタクトがあったため、積極的に参加を呼びかけたら反響があったという事。あと海の関するプロジェクトですね、ドイツとかルーマニアとか海を持つ国々は、もちろん興味を持っておりその時の接触があったので、ネットワークは元々作りやすい背景がありました。もちろん後は、ドナウ川保全国際委員会の後押しがあり、EUの統制があった事ですね。

【財団】このプロジェクトは、色んなネットワークの中でできたという事なので、たぶんこのウィーン工科大学以外のですね、色んな大学が参加されていると思うんですけれども、他
の大学との役割分担というのはどうなってるんでしょうか。
【工科大】何かをしようという課題があって、それを分担していったのではなく、逆のよう
に考えていたたくと良いと思うんですが、最初はすごく小さなものから始まった活動で、
5〜6人位のパートナーですね、それでやろうとしていた訳です。農業の分野、海洋の分野、水
の分野の3分野が集まって色々考えている内に、この分野で専門家が必要だ、この分野で必
要だと、逆にこっちから出て行って、必要な所に必要な人を頼んでいきました。もちろん、
元々昔からのプロジェクトとかの関係ですね、集まる人が捕まりやすい環境にありました。本当は小
さなグループのままでいようとしたのですが、当然とその役割分
担も決まっていったという事です。
最初から何チームも集まって始まりそれで役割分担をしたのではなく、小さなグループか
ら始めて、必要に応じて枝を広げて行ったという事です。もちろん、うまく行かない機関も
あって、最終的にこの17機関というのが揃って一緒にやって行くことができました。
【財団】ウィーン工科大学は最初のころから、小さなグループの段階でICPDRと一緒になっ
て関わってきたのですかね。
【工科大】そうですね、このドナウプロジェクトに関してはここが中心となって、もちろん外
から、委員会からの後押しなかかがあったんですけど、それでも、システムにとって中心的な役割
をまた担ってきました。
元々ここの研究所は非常に恵まれていて、各学術分野からのブレーンが集まってた訳です。
下水の浄化に関する分野ですか、生物学ですか、文化技術、環境、農業に関するそ
れぞれの専門家が集まりやすい環境にあって、その知識を持っていった人が集まっていたて。
あと、その他にも、その前にやっていたプロジェクトで栄養物質の収集に関する研究をして
いました。そうした条件が揃っていたという事です。
何が一番助けになったかというと、このゼスナさんが博士論文でこういったテーマを取り
上げてキチンと調べて、土台を踏まえて進めていくことができました。ランパートさんも博
士論文で方法論を確立しました。ですから、そういった物も非常に役に立っていた訳です。
【財団】先ほど発表の中でですね、東欧からのリンの流域からの発生源について、約50%が
“small surface water”で出て行かないという数字が出ていますね。ということは、黒海周
辺に50%が集中、集まっていくんですね。
【工科大】この小さな川に流れていくということですねけれども、その先ですね、それが川の
木に留まっているのか、川岸に留まっているのか、それか、どんよりさらに先に流れ行っ
てしまうのか、その場所によってもまた違うので、長期的な影響がまだわかりにくい、どこ
にあるのかがつかめられていません。特にこの53%なんですねが、これも洪水がおきた場合、
また移動していく訳ですね。どれだけが流れどれだけが溜まって行くのかが把握しにくいの
です。
【財団】こういった活動を動かすことには、地域の住民意識が高くそれがあるのかの影響を及ぼしたかどうか、そのへんをお伺いしたい。

【工科大】最終的には、こういったプロジェクトを市民に理解してもらうというのは大切ですが、実際のところそれは専門家ばかりの集まりで動いていて、すべて専門家達がやった訳であって、地域との関わりはどうも薄いと考えていると思います。これはあと、ドナウ川保全国際委員会と話し合っているところなんですが、こうしてプロジェクトで得られた知識を一般市民にも広めていく、政治的成果も必要になってきますので、色々なイベントで知識を広めて深めていく、そういう動きは行いました。

【財団】経済と水質の改善は反比例するような関係があると思いますが、水質は改善されたんですけれども、農業を改善して行くということについて、具体的な提案とかは今の段階できやあるか。

【工科大】一番のキーポイントが、EUの農業政策があります。その農業政策を利用して、分担支援金という支援金の流れがあり、それが環境保全を重視した農業技術の開発などに资金が流れているような政治的構造でしょうか、そういったものが農業状況の改善に影響力があると見ています。

もちろん、個々にも小さな対策を講じていくこともできるんですけれども、まず生産活動についてですね。生産率最大100%の生産率を目指すのではなくて、90%で満足しようじゃないかということで、飼料の使用量を減らしたりすることによって、栄養物質の流出量を減らすということですね。それから、肉類の生産、アルプスの農場では、牛肉の生産が非常に盛んなですけれども、100%生産のところをこれからは70%位に減らしていこうと、特に降水量・降雪量の多いアルプス地域で積極的に減らしていければ良いと考えています。栄養物質が流れやすい地域で、肉や動物の生産を減らしていくのが一番効果がある対策だと思うます。

もう一つアイデアとしてあるのは、動物性タンパク質に代わって、植物性タンパク質を利用して人間に必要な栄養を取っていくということで、肉の生産を半減させる。それによって窒素の流出量を農業の営みの中から減らしていこう、そんなことをして行ければいいんではないかという構想があります。

後は、地中のリンの量をこれ以上増やさない、なるべく保つか削減させていく、これが必要だと思います。

農業生産で発生した窒素を川に流すのではなく、川から別の所に持っていくとか、つままり場に放置させるような農業拠点の移動も考えていくべきと思います。たとえば、東欧ブロックの方ですね、旧東欧諸国ハンガリーでは窒素の排出量が10%減っています。

【財団】先ほど、降水量、降雪量が多い所が、窒素の発生量が多いと聞いたんですね。しかし雨が多いと濃度が薄まると思うんでけど。
【工科大】おっしゃる通り、薄められるということはわかるのですが、水には薄めるという効果と、あと流していく効果があります。アルプスとかの降水量・降雪量の多い所は、流す力が大きいものですから、例えばあの辺りから、黒海に流していく影響力っていうのが一番確率が高い訳で、濃度は少ないんですけれども流れる量が多い訳です。逆に非常に乾燥した地域、雨量の少ない地域は、濃度が高くなった流れ出していく量が少ないということですね、ですから、アルプスの方は濃度は低くても非常に問題はなるということです。

(3) シリカ

このプロジェクトの中心テーマではないんですけれども、このシリカが川に流れていく状況その現状把握なんか、それをちょっと調べたのでそれをご紹介します。

シリカの発生源ですけれども、洗剤ですとか腐食防止剤なんかにも入っています。洗剤とかそういった物質的なものから発生が5%で、その後の95%近くは生物学上の原因がある訳です。

ここで話題にするのは、溶出した溶解シリカですけれども、1980年〜2000年のまで間に統計をとりましたが、その時にわかったのが、冬はだいたい2mmg位が、夏はそれのが半減し低い濃度になっているということがわかりました。

これで濃度と排出量の関係を整理すると1月と2月では、2月の濃度と排出量との関連性はかなり緩やかになっている訳です。夏は濃度が低いんですけれども、夏の場合、濃度と流れの関係が非常に密接になっている訳で、夏に洪水が起きた場合、濃度が少なくて影響は少ないということではなく、洪水などで流れが増えた分、シリカ量が増える状況になり、洪水が多ければ多い程、量が増えていく結果になりました。

洪水の時、なぜシリカの量が増えるかというと、洪水だと水が濁るので光の透過率が低くなります。それでシリカの濃度が高まってくるという結果になるんです。物質に溜まってそれで分解されたりすることもあるんですけれども、洪水の時に、河床に砂なんかが溜まり、そこにシリカが蓄積、堆積し、濃度が高くなっていきます。

1920年〜2000年の文献には色々黒海のシリカの量が増えているということが書かれているんですけれども、1920年〜2000年の間の調査で、グラフで表わしたブルーの方は、水の1ヶ月当たりの流出量です。降水量に反応しシリカ量も増減しています。シリカ量があんまり変わらない所は、流水量も変わっていません。

これは、ルーマニアの黒海の状況ですけれども、ここは、だいたいドナウの入り江の所から100キロほど南部に下がったルーマニアの町の近くで、海岸線なんですからけれども、そこで1950年〜2000年まで計りました。75年位に急激に減って、それで80年代はだいて安定して減ったままだったんですけれども、90年代後半にまた上がっていきます。60年代は、値が上下したかというと、発電所の建設というのがあって、鉄の門なんかが造られたことが理由に上げられるのではないかと。発電所の建設、鉄の門の建設を開始した頃からシリカの量が増え始
めて、71年に完成したのですけれども、その後もその影響がしばらく続きます。発電所の鉄の門、ダムの建設なんかが量の変化に影響したと思います。

ブルーで示したところは流入量で、赤い方はシリカの濃度です。70年代までは上下したり、非常に大きなかぎりがあったりするんですけれども、それは、洪水とか季節によって色々変わってくる事もあります。同じ時期にいくつかの洪水があったときしたりした時、季節によっても違うということです。

70年代に入ると、今度は流量とシリカ濃度の関係が強くなってくるという事です。水の流れの量が多いと、濃度も高い。70年代特に多かったのは、ちょうど1970年ですね、この頃に50%もドナウ川から黒海への流入量が高まり、それと同じように、シリカの量も増えていったという事がわかりました。

10月〜12月まで、川から海に流れる量は少ないですけれども、そのために、黑海に溜まったシリカが循環しない、川から流れて来るものがないので溜まるという事です。ですから、必ずしも流量と濃度の関係がそこで成り立つかということはなく、例外的な時もあるという事です。

これも年代順によって表示してあるんですけど、リンの量もシリカ濃度に影響してくるのがわかると思います。70年代ですね。ちょうどその頃にリンの量が多くなって、窒素も似たような動きをしているんですけれども、栄養分が高くなった時期があります。リンと窒素が急激に増えたところで、シリカの消費量が多くなった。

年代年代によって、藻の繁殖に応じて窒素かリンかシリカのどれかが消費される。60年代は生物によるリンの摂取量が多くてリンが少なかったのですが、70年代はシリカの方がよく摂取された。それにリンなども多かった。すべての要素がいっぱいに消費されるのではなく、一つ一つの生態系の関連で変化しています。特に、シリカが多かったのは70年代あたり、洗剤が多く含まれていたという事ですね。

【財団】このグラフは黒海に溶出した量ですか?

【工科大】黒海の水中に溶出、溶解された分です。ちょうど71年ぐらいに、黒海から15kmくらい離れた所に肥料の工場が建設されて、そこでまた肥料工場からの排出物が増えました。リンの量ですけれども、これは一部の観測地点の話です。70年代にその肥料工場が建設されて、それからリンの量が増えて、90年代に閉鎖されたんです。その間には、増加が観測されたんですけれども、それ以降はまた減る傾向になっています。シリカは鉄の門の建設、リンの方は肥料工場の建設が大きな問題だと考えています。

【財団】植物プランクトンの種類が変わってしまうと思うんですが、そういう調査は行われていますか?

【工科大】おっしゃる通り、藻の種類なんかも変わる問題があります。ただ、これは地域的な問題であって、その工場の建設のある近くで観測されたことなので、海全体のことは言
い難しいんです。80年代のシリカ量が少ない時に夏に藻の繁殖が多くかったりとか、そういった問題が教訓になってしまいました。

緑の方は合流地点、ドナウ川と黒海の流入地点の観測したものです。もう一つ、赤い方は黒海の水の調査ですけれども、90年代にドナウ川の水の流れが少なかった時期と一致し、97年以降は、ドナウ川の水の流れが復活している状態になっています。70年代、これは観測所の統計の話ですけれども、栄養物質が流れられてくるのはドナウ川からだけはなくて、工場からの排出が多かった。

たぶん、ご興味がおありなのは、シリカが栄養物質としてのシリカという側面だと思いましょうけれども、シリカと栄養物質との関連ですね。いつどの季節にどんな種類が発生するか。芽を出したとか、そういったこと。黒海での問題は、一つの種類の藻が繁殖しすぎて、他の種類の藻が夏に育たなくなるほど栄養が取られてしまったという状況があります。リンや窒素が十分に増えてくると、今度は、それまで他の藻に吸収されていた栄養物質が、その次の夏まで残っているというサイクルが残されて、他の藻も繁殖するという形になっていく訳です。

【財団】黒海のシリカの量が多い方が良いと考えているんです。少ない方が良いと考えている。どちらにどちらでしょう。日本ではシリカの量が減ってきても、減らないようにすればどうしたらいかというような事を考えてるんですが、いかがでしょうか。

【工科大】シリカ自体の量だけではなくて、リンと窒素との割合で見ると、どちらが良いかということは言えません。シリカ量は人間生活に直接には関係しない、どちらかといえば生物系に重要な物なので、シリカ量をコントロールできないのであれば、栄養物質のコントロールによって間接的にコントロールしていくしかないと思います。

【財団】全然関係ないんですか。左上の黄色い「5」と書いてあるそのマークはどういう意味なんですか。

【工科大】EU の第5次計画という事です。これに参加しているところは、こういう刊行物ですか。なんとか発行する時には、必ずこのロゴを入れることとなっています。

さっき、どうしてヨーロッパでこういう国際プロジェクトが成り立つかといった時に、それぞれ国の言葉が違う訳で、それぞれが難しい事をそれらしく話せば、これは冗談ですけれども、難しい事をやりあっているように見える。もっといい方法っていうのは、もう専門用語、自分達の言葉だったら、専門用語ばかり使いますけれども、外国人同士だと、英語で簡単に表現する練習ができるんです。

皆さん、今日一日、いかがだったでしょうか。日本でとってもいい滞在したことがあるので、今度いつかまた近い内にこういう形でお目にかかれる場面があればいいなとしています。日本でもオーストリアでもどちらでもいいです。

【財団】私たちも理解が深まりました。本当にありがとうございました。
5. ドイツ連邦水理研究所の取り組み

(1) 流域概要
【研究所】ドイツについて、2,3をお話しします。（図5.1）
ドイツは16の州に分かれております。環境や水に関しますと、この16に分かれているという事が問題になっています。連邦主義とは、環境問題を改善していくという方法においても難しい問題があります。
この連邦水理研究所では、管轄は連邦水路だけになります。ここがヨーロッパの中心、中央ヨーロッパになります。北海、バルティック海、フランス、ポーランド、このあたりにドイツがあります。ここがライン川です。ベーゼル川、エルベ川、オーデル川です。この部分がドイツ領となります。ここがドナウ川で、この大きな川を運河で繋ぎました。これが、マインドナウ運河です。これがベルリンまで行っているミットランス運河です。北海、東北海運河です。あと、色々小さな運河がたくさんあります。
【財団】運河の管理は連邦が行っているのですか。
【研究所】それは航海局が管理しています。この航海できる水路、運河は全て航海局の管理です。小規模の河川並びに小さい運河については、それぞれの州が管理しています。

(2) 組織の概要等
【研究所】組織と課題について説明します。この研究所は連邦交通省に所属している機関です。
水文学、水道経済、生態・河川保護に関わるアドバイスを行っている研究所であります。それと連邦環境省です。こちらの方に関してもアドバイスを行っております。連邦水路については、連邦航海局の方にアドバイスを行っております。
現在290人の所員が常勤しています。あと60人がパートタイムです。
こちらの財政ですが、予算全体で2,500万ユーロ、その内の85%は連邦交通省からで、約10%が連邦環境省からです。残りの5%が色々研究所によって得たお金やEUからです。
今、改革が行われている状態で、これからは、私達が行った仕事の成果に対しての予算が
つくことになります。
【財団】そうすると、研究内容は具体的にはプロジェクトに関する調査研究であり、基礎的な研究よりも、ダイレクトな研究、調査を行ったという事が事業費の大部分ですか。
【研究所】今おっしゃった事がこれから目的になる訳です。実践に則したプロジェクトです。その基礎研究というのが、誰がやるべきかが大きな議論になっている事もあります。連邦レベルで40箇所の研究所があります。その40箇所の研究所からその研究費を取り除いて、大きなプロジェクト並びに大学の方にその予算を廻そうという風にしようとしているのです。
応用研究と言われている10%位のものですが、それを行っていくというのは、私達のこの専門分野における専門性を保つために必要なことです。この議論はまだ煮詰まっておりませんので、これが決定するまでにまだ何年もかかると思います。
主な課題ですが、連邦水路というのは、色々その使用者によって、活動がある訳です。航海をする人、水の供給者、環境、または娯楽という事です。これらの活動をする場合に、こちらの方でその解決方法を見つけようと援助する訳です。こちらでは、輸送、水理経済、また生態という面で色々なところで活動があります。あと高水と低水における調査です。
予想に関して、水道学的な予想や水文学的予想です。生態的発展についての予想も行っていきます。この生態分野に関しましては、モデルを作り始めたばかりです。
観測などにより水収支計算で水深を測り、環境に適合しているかというような基礎についての方法を開発することです。連邦水路における水、懸濁物、あと土砂についての調査です。それが構造学的に見たものであります。それと化学的、生物学的な調査です。
これが組織になります。（図5.2）こちらが、研究所で、3つの課に分かれております。

![研究所組織図](image)

図5.2 研究所組織図
量的水理・水文学・河川形態等と質的水文学・水質等、それと生態学・環境保全等です。3つ目の生態学が一番新しい課になります。こちらの研究所では、約10年毎に1回、課の見直しを図っており、その時に要求されている事に従って、課の方も再編成しています。あとはそれぞれの課についてはまたお話します。

国際的対応部署として秘書課があります。これは国際水文学計画のユネスコの関係です。これは各国にあると思いますが、世界気象機関の運営水文計画といいます。それに対してドイツで行うことをこちらの方で調整いたします。

もう一度、よくわかるように説明致しますが、ここに、データセンターがあります。こちらの方で、世界各国の全ての川の流れなどを集めましてデータバンクに入れます。例えば、世界の気象データが必要な人はそのデータバンクから利用する事ができます。日本では文部科学省の防災研究所というところでデータを取っています。

防災研究所の方もこちらに来たことがあります。ヨーロッパの組合というものがあり、この参加メンバーは今春新しく加わったEUの加盟国を除く16カ国の加盟国にここと同じような研究所があります。これも拡大する必要があると考えています。

(3) 調査研究事例
【研究所】量的な高水・低水分析です。洪水につきましても、洪水予想を行うことで航海をいつまで可能であるか検討しています。
【財団】実際の運用河川で船が動いたりしますが、そのための情報を予測して、予測データ等を各利用者に渡しているのですか。
【研究所】データを収集し測定を行います。それに測定に必要な器械もこちらで開発します。模型を作りますので、そういう模型を作ったりする事は研究になります。この分析は、全ての分野に関わる事であり、植生や地下水など全て含まれています。先ほど申しました水位の予想や水収支の調査です。

水中の玉石など自然の移動で、その河床が変わってきますので、航海に影響がある訳です。懸濁物というものが、溜まりますと、環境に対する問題が起こり、そういう懸濁物は、汚染されてきています。そこでドイツでは土砂を年間4,500万㎥をパワーショベルで掘り出しています。

沿岸部での生態的な河床調査では、底に水がない状態にして

図5.3 音響測深システム
調査をする事になっております。河床についての検査、調査時は、水がない状態で必要な調査が行われています。

その他、化学的な地下水の調査や測定方法につきましても、ほぼ独自で開発しております。ここはライン川のひとつの区間です。ここはローレライの岩です。ここは、水面から15m深さがある所です。エコーサウンディングシステムといいます。（図5.3）

【財団】音響測深ですか。
【研究所】音響測深システムです。この方法ですが、航海をする場所を探るのに必要であり、新しいナビゲーションシステムを作っております。その船の航海士が器械を持っており、河床の状態を見ることができるようになっています。流速と水位を測り、船が通れる箇所か通れない箇所かなどが、ここでわかるようになっております。ですから、荷物の積載量を増やす事ができる訳です。

質的、水理量学、水防学、化学的、反射、放射性学的調査です。それについては、ゲラーさんの方から説明させて頂きます。

重金属など、そういったような汚染物質に関する土砂の調査です。これが、土砂中のカドミウム量です。1970年から今日までの量です。カドミウムが非常にたくさん減ったというのがわかります。その汚染物質量が70％～90％減っております。

生態属性学分析です。例を用いて後ほどお話し致します。

他の課で得た水質や量、質等の情報で計測すると、水質を決めるのは入っている物質だけではなく色んな作用も関係します。ビオテスト方法という方法（魚や貝による相関関係の模型）を作りまして、植生など色んな付加的要素を扱って作用を計測します。この作用が影響して魚など生態学に影響します。

その他、プロジェクトグループとしまして、エルベ川の生態学を研究しています。90年にドイツが統一されまして、それ以来エルベ川が比較的自然だという事で研究を行っています。エルベの川の水は、水質が悪いのですが、構造的に見ると、非常にいいので、新しい認識を得る事ができました。

当研究所は、その川毎に仕事をしているのではなく、専門領域にまたがった計画を行っております。そのひとつが北海、東海の空気のモニタリングです。そこでは当研究所はこの飛行機に特別な計測装置を装備するという事をお手伝いしました。これは、レーザーですが、そのレーザを使って水面を探知しました。その水面上の油とか、科学的汚染物を探知します。これは、環境汚染者を見つけるために、ナビ上で効果的な方法です。

もうひとつ、専門分野にまたがった領域の研究というのが、港に入る所です。非常にたくさん土砂を掘り出さないといけないので、これを外海の方に持って行きます。これはホッパーと呼んでいます。土砂が広がり、その近くにあるものに全てに影響を及ぼす訳です。

ドイツは悪化禁止法というのがありまして、例えば、ここにあるものよりも良い物しかそ
この持ってきて入れてはいけないという法律です。ですから、最低条件それよりも少しでも良い物をもっていきます。

これが決定をサポートするモデル（システム）です。何かを変えようという場合、量的、質的、河川学と生態学の方から全部合わせてモデルを作って決断を助ける役割です。

これは、オランダのベンツ大学と一緒に研究をしています。オランダの航海専門の所（ライトファーザーシュタット）と密接に研究をしています。

これまでの一般的な組織についての話しは、まだいっぱいお話しをする要素がありますが、これで終わらせて頂きます。

【財団】この研究所の業務内容と合致しているか分かりませんが、私なりに考えてきたことを伺いたい

日本では河川法があり、その大きな柱として治水、洪水対策、二番目に利水、飲み水とか農業用水、三番目に各河川の水質保全、改善、生態系の保全などの環境という項目があります。その中でも今まで洪水対策に結構優先して取り組んでおります。今までの話を聞きま

【研究所】まずは、ここは交通省の直属という事で、一番の課題は、航海を確保するという事です。それは、連邦水理法というのがあり、そこが元になっている訳です。あと水路です。必ず河川が流れるようになっていることが必要です。生態学を考慮した上で、全ての問題を解決しなければいけないと考えています。どういう対策をとると言われても、環境を傷つけない、環境を汚染しない方法で行わなければならない訳です。これがドイツの連邦法です。今まではドイツですが、今度 EU の方で、水枠組指令というのがあります。

補足でドイツについて言いますと、先ほど治水、利水、環境の 3 つの分野を上げていたが、治水というのは、ドイツの場合は州の管轄です。ただ航海に関わる治水があればこちらの方で研究を行いますが、治水だけを扱っているところは連邦ではない訳です。

ただ、連邦環境省が州に対してある一定の指導を行う事はできます。しかし、ライン川のようないくつもの州にまたがっている河川については非常に難しいです。例えば、バーデン・ヴュルテンベルク州やヘッセン州など、治水のための遊水地等を作ることが困難な訳です。

しかし、いくつもの州共同で水作業委員会というのを作っています。これは州の地方組織みたいなもので、州毎で何とか問題を解決しようという事で

図 5.4 航路水深確保のため川幅を狭くしている
討論を行われるようになっています。
【財団】航海に関するものだけですか。
【研究所】航海に関係するものだけで
す。船は大きな河川も通りますし、運河も通ります。ですから、それらの管理も行わなければなりません。ただ、
私達の方はアドバイスをすることがで
きますが、実際に何かを行う権利はあ
りません。（参考：図5.4,5.5）
ドイツの連邦研究所の場合は、全て
そういう風になっておりまして、アドバイスはできるが、実際には、専門官庁にアドバイス
を行うことです。

(4) 構造の欠陥
【研究所】これからお話しするのは、ひとつの研究です。それは構造の欠陥という事です。
水路を拡幅している間に河床の形が非常に変わります。今からモーゼル川のいくつかの例を
とってご覧頂きます。その他、生態状況を改善する対策をご紹介します。
ドイツの水路を示した地図です。これがモーゼル川で、これがフランスの山岳地方をさし
ています。コブレンツでライン川に合流します。モーゼル川のデータですが、ドイツ内を流
れている部分が270kmです。その270km中の高低差が85mあります。この勾配は、0.3%です。
河床の幅が、100m～200mで、この渓谷自体が非常に狭く、狭い所では300mとなります。
この写真を見て頂いてもわかると思いますが、水位が上がる所はすぐに山が始まっています。
これはコッヘムという場所の近くでの水位ですが、平均で310m3/s流れています。平均的な洪水のほぼ3倍になります。平均的低水位になりますと、60m3/s以下です。
これが、モーゼルを縦断的に見た図です。60年代初めのモーゼル川では、堰、水門などを
作りました。270kmの間に13の水門並びに堰があります。堰などの落差が3m90cm～9mあり
ますが、航海できるには落差は2m80cm以下でなければならない。また航海する川幅ですが、
40m以上となっています。
この、ふたつともモーゼル川の写真ですが、両方ともここからそう遠くない所です。右が
1958年の拡張する前の写真です。これが、1976年で拡張後の写真です。
【財団】拡張というのはどういうことですか。
【研究所】拡張というのは、水門、堰などを作ったという事です。それを拡張と言っていま
す。ここはまだ、堰、水門がない所ですが、それでも突堤などは人間によってつくられてい
るというのが分かっていただけると思います。この時点でもう自然河川ではなく、航海路に
なっていた訳です。右の方が河床が多様にできています。左の方は、かなり真っ直ぐ河床が
図5.5 内と外で水位差が生じている
広くなり、護岸が真っ直ぐになっています。これは、堰を作る事によって、右の遊水地と言えるような部分が取り除かれてしまった訳です。これによって、色々な河川の生物の生活圏が失われてしまった訳です。

これは、ふたつ目の例です。これが 19 世紀の地図です。これは 20 世紀の地図です。この地図の時代差ですが、約 150 年位になります。このモーゼルが急にカーブしていますが、元々、約 10 の中州がありました。現在、これが唯一残っている中州です。あとは全てなくなってしまいました。その中州は、一部、陸と繋がっている箇所もあり、そのため水が流れずに堰き止められてしまうようになっています。

これが、こういう風に変わる例を見ていただきましたが、こういうことが、堰、水門を作ることによって、河床で起こり得るという事です。ここでは、2, 3 しか説明しませんが、この水門、堰の建設によって中州などがなくなります。

植物が生えていない小さい中洲は、短い期間しか存在しなく、なくなってしまうようです。その中州がなくなると、河床の形が大きく変わってきます。例えば、横断工作物である堰をつくる事によって、生態や河床の形が変わってきます。

航海路を作るために、シャベルで河床を掘ります。掘ると土質の組成が変わってきますし、配分も変わってきます。ここは沿岸で起こる可能性がある構造の変化を示したものです。あるものを作る事によって、沿岸が直線化され沿岸の距離が短くなり、生き物の生活圏も短くなってしまう訳です。堰などを作る事によって、元の沿岸にあった植生、樹木などが取り残され、樹木等が繁茂してしまう訳です。

例えば、草地におきましては、その草地に堤防などを作る事によって、洪水の場合の遊水地が狭くなってしまいます。これは洪水対策のための構造改善方法ですが、河川の生態学を促進させるために行われる事があります。例えば、魚道などをあわせてつくることです。

先ほど、島と陸地との間に水が流れていたのを、水が流れすぎないようにしていましたが、それをまた河川として流れるようにして、再度活性化させます。あともうひとつは、河川の沿岸の建設物を自然に近いような形に作り直すということです。また、植物並びに樹木を植えていくという事も重要です。

しかし、航海局が行なわれる内容は、河床と沿岸に限られてしまう訳です。遊水地というのは、土地の所有者がいますので、その一部を管轄にしてしまうという訳です。モーゼル川で行った対策について、いくつかご紹介します。

これからのお話しは、堰、水門を作ったために起こった損害をなるべく最小限にするための対策です。この絵は水深が非常に浅い所です。このような地区は、モーゼルではどこにもありません。こういう所は微生物や生物の生活圏を与えられるために非常に重要です。ここは、ドイツ語でライフベルと言いますが、そこの前に堤防のような形で土を被せてあります。この堤防を作った事によって、船が通った時に起こる波によって水が堤防を超えないよ
うになっています。この岸に生息している生物にとって、船による波というのは、大きな支障になります。

これがまた別の対策で、モーゼル川の中洲に溝を掘りましたが、そこにモーゼル川の水が常に流れ込んでいましても、常にモーゼルの水が、入ったり出たりするという事ができるようになっています。もちろん、洪水の場合は、溝水になって水が被います。

これはまた別の対策で、新しい突堤を作りまして、鍵型突堤というのですが、これによって、この沿岸部を保護すると、水生植物が生えているのが見えます。この植物は、船が通ることによってでる波の影響が少ない所に生えています。（図5.5）

【財団】水制工が河岸にくっついていない（オープン）ですが、それは意図的にそうしているのですか。

【研究所】そうです。ここは、水が流れるようにするために突堤を繋げておらず、これはひとつつの実験です。色んな流れをここで作り出すことができる訳です。

洪水の時には、水は多く何もないが、普通の状態の時に色んな速さの流れを作ってやって、実験しています。これは、突堤といってますが、水を調節するためのものではなく、生態学的な目的で作っています。

山本さんは沿岸と突堤の間で壊れてしまうのではと心配されていると思いますが、水文学的な視点からすれば、そういう風に考えられると思いますけれども、これは生態的な意味で作っています。

【財団】これを決める時には、実験や水理計算などをこの研究所で行って、こうした方がいいなどのアドバイスをしているのですか。

【研究所】これは、私達の研究所が担当官庁と一緒に計画をしたものです。工学士、河川工事エンジニアとも一緒に計画を立てて作っています。これは10年前に作った実験装置で、その間ずっと実験結果を分析しており、もうすぐ取り外す予定です。

【財団】取り外したらどうするのですか。

【研究所】この装置はいいので、これを取り外す事はありませんが、実験は終わったということです。その報告ですが、洪水の危険を高めるかという事についても調査を行っています。こういう河川工事は、全て作る前に洪水の危険が高くてないと確認されたものしか作ってはいけない事になっています。こういうような実験装置おきまして、例えば、魚が増えるか、魚が

図5.5 水制工の実験
卵をたくさん産むか、また、それによって小さな稚魚がたくさん増えるかというような調査も行われています。このような実験は、10年前から始まりまして、ずっと調査が行われております。そこで、魚など小さな生物、脊髄や脊椎動物の調査です。そういうような生活圏ゾーンがあるとかなど、すべて調査しております。来年、最終報告書を作る予定です。

【財団】この実験の結果は、成果が上がったものと評価されるのですか。
【研究所】今こちらでお見せした分は、対策の一部です。お見せしたものは、良いと評価できるものです。ここでお見せしなかった対策で、あんまり良くないとと思われるものがあります。これで私の話しは終わりにさせて頂きます。どうもありがとうございました。

【財団】今日は発表とは違いますし、ドイツでは、たぶん19世紀にナビゲーション用に水制をたくさん作ったという話しを聞いています。今回、閘門とドックをここの中13箇所作りましたが、1970年まで作っている訳ですから、こういう閘門を作る事によって、ナビゲーションの改善を行うのは、いつ頃が盛んであったか教えていただけますか。
【研究所】1960年代コースです。一番最初に作ったのは1920年代でした。20年代に最初にこういうようなものを作りまして、小さい船が航海できるようになり、60年代に、大きな船も航海できるようになりました。詳しく言えば3段階で良くなっていますが、それは、一番最初は、1800年代に行われました。それは本当に小さな船しか通れなかったのです。
【財団】高低差（落差）2m80cmがありますが、非常に大きな船が通る時に問題にあったというか。
【研究所】1960年代に大きな船が通るようにしました。
【財団】1960年代にたくさん作った時には、エコロジーとか生態というような事について、あまり配慮されてなかったと思いますが、そのとおりですか。
【研究所】70年代の中頃から、ようやく生態学というものに対して法律などもだんだんそれに対応できるようになった訳です。
【財団】もうひとつ聞きますが、洪水の時はゲートをたぶん全部開けると思いますが、洪水調節時は、水位を上がることですか、下げるのですか。
【研究所】その水位によって違いますが、それ以下でモーゼル川が、自由に流れようとしております。面白い事にこの閘門、閘門は、後ろの水位がまず下がります。この閘門が、こういう施設ドックは、洪水が起きても水位が変わらないようにしています。
洪水の場合は、堰、水門なのは全て水上に隠れてしまい、建物がひとつ見えるような状態になります。先ほど保護された、沿岸の地域ですが、航海局は、60年代以降に、例えば、何か工事をして損傷を起こした場合には、その代わりとして、沿岸に何かを作っても良いというようなことが許されるようになりました。それが60年代になってからです。
先ず、堰など交通可能のものを作ります。後から河床をもっと深くしました。今、モーゼルの、航海路が非常に多くになりましたので、閘門の航路をもうひとつつくろうとしています。
（5）ライン川の魚
【研究所】これからは、ラインの魚を増やすための対策についてお話します。

これが、人がライン川に対してどういったような事を行ってきたかというものです。どういったような事をして、魚の資源が減ってきたかという事についてお話します。（図5.6）

たくさんの方が、ライン川の絵を描いており、昔のライン川がどのような姿をしていたかというのが分かります。現在のライン川は、昔はもっと支流に分かれていました。これはオーバーラインと言うマイン川の上流です。この辺りは川幅が広かったので、支流に分かれる可能性があった訳です。1817年、この真中のグレーで示した所に、運河のようなものを作りまして、その両側に堤防を作るということをしました。昔は水深が色んなものがありましたが、色んな種類の魚が住んでいました。

現在では、水流も水深も平均的になってしまったので、水の資源や魚の資源もそれに伴ってきております。

次に、魚に大きな影響を与えるのは、この堰の建設です。魚の通り道が、ここで中断され、こういう堰が出来ましたので、上に登るときは、階段を上って行っていますが、降りる時は、そこの大コンがありますので、そのタービンに入らないようにする必要がありました。こういう堰の建設ですが、初めは小さな河川からはじまり、だんだん大きなものになって、ライン川にも作られてしまいました。（図5.7）

特に移動する魚の現象に加わりました。ライン川は、100年前まではヨーロッパで最も鮭の多い川でした。1000件も漁業を行っている方がいて、戦後の漁業を行っている人達が、主に、鮭を漁獲する事によって生計を立てていました。昔は、このように13万匹、10万匹の鮭を捕獲できましたが、最後にそういう大きな鮭が捕獲できたのは、1950年代です。

同じような事が他の魚でも起こっていました、チョウザメがそうです。北海に生まれまし
て、ライン川でもオランダの部分で卵を産み、ここの支流が干拓により農地に変えられましたので、オランダのチョウザメの捕獲が1920年頃にはもうゼロになりました。

鮭のデータがあり、それはオランダにおけるライン川での捕獲だったという事です。ただ、ドイツ、フランス、スイスでも鮭は取れました。ジロードという川にまだこのチョウザメがいますが、それは水の多いところです。1970年代に水が汚染された事によって、魚が非常に減りました。第一次世界大戦後に、産業を促進するという事で、非常に工業が発展して水が汚れました。

これが1972年の河川の地域を示したものです。図5.8 赤が汚染されているところです。緑が汚染されていないところです。昔から知られていた魚の種類の半分の種類がいなくなりました。そこで、ライン川が通っている州が一緒に討議を始めました。それは飲料水をライン川から取っている所が非常にたくさんあるからです。その共同の組織がIKSRと言われます。

そのIKSRというところは、浄水場の建設を促進して、それによって飲料水の質を良くするという目的がありました。元々いた種類の全種の魚が再び生息してきました。水質が良くないと住まない魚も戻ってきました。これが、マスです。こういう事によりまして、IKSRというのは、このライン川の通っている州だけでなく、国も含めた組織になりました。そこで浄水場の建設を促進しましたが、こういう事によって魚が戻って来たのですから、また、死に絶えてしまった種類、つまり鮭を放流しました。88年に近くの支流から稚魚をライン川に放してやりました。

それから同時に鮭が遡上できるように魚道も作るようにになりました。1990年以降、海から戻ってきた何千トンもの鮭がライン川の方に戻って来ています。その鮭の一部が、ライン川の支流でも産卵しているという事がわかりました。しかも、稚魚を放流することをやめる事はできません。というのは、鮭が堰を上りきったりすることがまだ難しいという事で、自然の鮭の土台が見込めないからです。

現在、魚道を作っているのは、鮭が多い上流にある堰です。これが、2000年に作られた初めての堰に作られた魚道です。これが、海から見てひとつのものですが、それはカウストローヴェという南の方です。この辺りにあります。

これは、池を繋げているような形になり、その深さは最大で、1m50cmあります。これが何
千の魚がここを通る訳ですが、そのうち鮭もよく通るのがわかります。先ほど、魚が降りてくる場所、タービン通って行くと言いましたが、それは、そこで魚をまだ保護する方法や予防などの方法はありません。

ですから、魚道を作る時は、なるべく海に近い所にして、魚が泳いで帰って来る時にたくさんのタービンを通って帰って来なくてもいいようにしています。

うなぎの場合は、タービンを通った時に、その致死量が非常に多いです。うなぎは長いので、タービンとぶつかる可能性が非常に高いからです。ある場所では、うなぎの漁獲量、種類が非常に減ったので、タービンの前でうなぎを捕まえて、それをトラックに乗せて海の方に運んで海に放すという事を考えました。他の方法も、とってもよいかも知れません。例えば、日本で皆さんのが行っているようなうなぎの養殖などです。

もうひとつは、魚を増やすための方法として、航路を完成するという事です。魚が、その沿岸部でたくさんの産卵しますので、そこを船の波から守ってやる事が重要です。ここに堤防を作ってやって、船の波から守っています。そして、植生が、その上に生えまして植生が水の中まで入って来れないようになっています。船の波が来てない所には、たくさんの植生物が生えてます。そこで産卵が行われています。

ここはモーゼル川に繋がっています。ただその繋がる場所はなるべく狭くしているという事が重要です。この入り口の繋がりが大きいと、船で来た時に水が寄されても、それがまた水が戻るというときに大きな水が戻るというときに大きな水が戻るというときにはならないからもありますので、それがないようにということです。

こういうような方法は、治水対策と組み合わせて、行う事も可能です。オランダではこういう事を行っていて、これを治水対策との両方の目的を兼ねたもので作るという事です。それは、ライン川とアプラーで行われています。こういう川がありますが、遊水地を大きく取りまして、それを洪水の時には水を溜めます。洪水がなければ、たくさんの生物の生活圏としてそこに住めます。

ドイツのデビアンでは、治水対策として、遊水地のようなもので、池を沿川につくり、洪水が出たときに水を入るようにするという方法です。この溜池は洪水用の溜池です。こういうものをライン川と繋いで、そこに魚の生活圏・保有します。私が話したのは、これで終わりにさせて頂きます。どうも、ご静聴ありがとうございました。

【財団】小さな池についてですが、洪水の時にため池に流砂がかなり堆積すると思いますが、そういう事はまだ起きていないうですか。

【研究所】それは、今のところはないです。モーゼルの場合は水位が10mまで上がりますし、流れが非常に速いので。この対策は、もう60年代から始まってますので、もう40年間行っているという事です。今までのところは、その流砂はないです。

大きな石が今でも昔と同じようにありますし、汚泥はないです。
【財団】研究機関に対して、質問はちょっとはずれてしまうかもしれませんが、先ほどの方もそうですが、こういったことは対象物が人工的になっています。どこまで、自然に戻そうとされているのか。どのように戻そうとしているのかをお聞きします。

【研究所】これは、政治的にしかお答えできないようなお話です。お金があれば、たくさん投資される事になるでしょうが、ドイツの経済的状態が非常に悪い状態では、そういう生態学的な、つまり自然体制というのはあまり進みません。国というのは、社会がそれを負担できるだけのお金しか投資できないのです。簡単に自然保護というものには投資できないのです。自然の保護とか、自然再生というのが、これからの将来に対する重要な問題だという事は認められてきております。

昔は、工業化して利益だけを見て、色々な事をして来た訳ですが、そういう事をすると、その後もっとたくさんのお金がかかるという事がわかりましたので、今は環境に対しまして、何かをしなければいけないというのを法律で決められています。しかし、法律というのは、変える事ができますので、具体的なお答えは、ちょっとできません。

ライン川とモーゼル川の場合は、その使用目的が航海という、非常に重要な訳です。ですから、河床については、掘ったところをまた埋め戻すという事はないと思います。人工的な対策というのは、海岸、沿岸部分だけに限られております。

水力発電所などを取り外すという事は、ありえないでしょう。しかし、小さな河川で獣を爆破したという事はあります。

【財団】護岸改修もありますが、改修目標が高いと費用も大きくなりますので、結果的には事業費が上がってしまうという恐れがあります。それがどうかと思うのですが。

【研究所】環境を完全にするという事は、個人にとってもすごく良い事であるという事が言えると思います。例えば、本当に自然に近い景観に人々が行って感じる事と、本当にこういうところしかないような所に行って感じるのと、やっぱり違うと思います。

ビオトープがここに少しずつあるのではなく、いくつものビオトープを作ってそれを繋いでカウナとかトゥローラなど、そういうものが見られるような場所を連鎖して作っていく必要がございます。こういう事は政治の方から要求された事ではなく、国民の方から要求された事であります。

(6) 河川化学

【研究所】排水料金法というのは、徴収という方法でまかなっていますが、これは、污水排水に汚染物質が紛れ込んでいて、それが川に流れ込んだ場合は、それについての料金徴収を行うという法律です。それによってもこのカドミウムの量が減ったという事です。

この法律によりまして、河川の汚染物質が減り、アンモニウムは 1984 年から 2000 年で、3万7,000t から、6,800tに減りました。全リンも3万2,000t から減りました。この銅・ニッ
ケル・鉛・砒素の全部が減っていますが、ただ、銅は、まだ多い状況であります。まだ、全ての問題が解決した訳ではありません。

図でお見せしますが、これは両方とも農薬ですが、モーゼル、特にワイン場の葡萄の栽培がありますので、地形状態によって、こういうような農薬が川の中に流れ込みやすくなりますが、最後に現在の図をお見せします。

昨年は、低水位の時期が長くあり、水温が非常に高くなりました。このブルーのラインが、コブレンツのライン川で、測定した温度の平均温度であります。最高で、夏で22度まで上がりますが2003年のコブレンツ市の平均が、一時は28.1度まで上がりました。

それの赤の部分が、この上と下のこのあたりですが、これは25年間の最大の幅を示しています。1978年～2002年までです。この2003年の最高温度が、この2002年までの平均温度の幅を超えていまます。それでは、水温が問題だというのではなく、どのくらいこの水温が続いたかっていうのが問題となります。ここにライン川とモーゼル川がありますけど、2003年には、水温が25度を超えた日が41日間ありました。この計画を行ったこの期間中、わずか9年間しかこの25度を超えた日があった年はないのです。（図5.9）

モーゼル川では、94年に水温が25度を超えた日がたくさんありました。特に、こういうような温度が高い期間は、特に集中降雨時に魚に対して影響を及ぼします。このような状況になりますと、魚にストレスがかかわり、魚が病気にかかります。またよく魚が死んでしまうという事も観測されております。これで終わりです。

ひとたび言わせて頂きますと、現在行っている研究領域は、河川における医薬品で非常に少ない量でも影響を及ぼすことがあります。ですから、こういうものを、分析することも非常に手がかかります。

どうも、ありがとうございました。

【財団】今日は本当にありがとうございました。
6. バイエルン州における再自然化等への取り組み

6.1 バイエルン州における取り組み

訪問機関：バイエルン州水管理庁

今回おいで頂いて非常に光栄に思っております。私はハルツモッツ・カウンツェンガー(Hartmut Kunzinger)と申しまして、当バイエルン州水管理庁の教育係として、国際関係を担当しております。本日の議論以外で後日質問がありましたら、どうぞE-Mailで質問を出し頂きましたらお答え致します。

(1) バイエルン州の紹介

それでは、バイエルン州と当庁について簡単によく説明します。

バイエルン州の面積は7万km²でドイツの中では一番広い州です。人口は1,240万人で、ノルトライン・ヴェストファーレン州に次いで2番目に多い人口となります。州内の人口分布は、ミュンヘンが140万人、アウグスブルクが40万人、ニュルンベルクエリアランゲンが60万人続きます。

第一級、第二級河川が約9,000kmあり、小さい、第三級河川が約50,000km以上あります。遊水地が約100箇所あり、水力発電所が4,700箇所あります。

降雨量ですが、こちら、アルプスの辺りですね、この辺りで年間2,000mmの降雨量があります。図6.1

ドナウ川は黒海に注いでいます。北部にはマイン川があり、東西に流れる川としてはヨーロッパで最大です。

このマイン川とドナウ川は運河にて繋がられておりまして、航海が可能になっております。これは、北部の降雨量が少ないので、ドナウ川の水

図6.1 バイエルン州の年間降雨量分布図
北部に運ぶためにこの運河を使っています。これは、川の生態系を安定化させるための対応策です。年間1億2,500万m³を送水しています。
【財団】地形勾配に逆らって逆方向に流しているんですか。
【水管理庁】ドナウ川の取水地点は標高338mです。そこから標高406mまで揚水しています。下流のバンベルクは200m位の高さになります。（図6.2）

(2) 水管理庁の課題
当水管理庁には大きく3つの課題があります。1番目は洪水防護です。2番目は飲料水の供給です。この2番目の課題は、99%の方々が水道網にアクセスされておりますのでほぼ完了しました。水は地下水で95%をまかなっております。残りはダムです。3番目の課題は、河川保護になります。今日の午後に、視察して頂きます場所では、夏に泳ぐ方が多くいます。ここでは下水施設で、紫外線放射による殺菌を行い、川で泳いでも問題ないようにしています。このようにして、私達は河川を清潔に保っております。

(3) 行政改革（民営化）
今この州では、今まで州で行っていた事業を30%減らす事を目指しています。州は基本的な課題だけに制限し、他は民間で行うというような事になってきました。今、大きな改革の途中にある訳です。この改革方針は4週間後に決定が下されまして、1年後か2年後かにまた当庁にいらっしゃれば、当庁はミュンヘンではなく、フォーフェンというあたりの「HOF」と書いてある所がわかりますでしょうか、あそこは当庁が移転する所になります。ここから約300km離れた所になります。
行政は縮小するという事と同時に、経済構造の弱い地方を促進するという事も移
転目的のひとつです。フォーフェンの辺りでは過去何年かの間に25,000人が職場を失いました。そこには繊維業界があったのですが、それが衰退し経済状態が非常に弱くなってきました。

【財団】日本でも民営化の話が出ていて、政府の構造がだんだん変わるかもしれないという段階にあるんですけれども、民営化する領域というのは、バイエルン州のこの場合には、どういった領域を民営化するんでしょうか。

【水管理庁】それを今からお話しします。ここは州と市町村で役割が分かれていて、浄水、飲料水とそれの排水については、市町村が自分の地域について全部責任を持ってやっています。私達はそれに関して、アドバイスを行う機能を持っておりまして、例えば、どういう浄水装置を使ったらいいかとか、どういう品質を水が必要であるかとか。こちらから規制することはできません。ただアドバイスを行うだけです。

これまでは、例えば浄水装置を作る場合は、市町村の予算が少ないような場合には、州から補助金が出ていました。こちらの方が、そういう建設計画が正しいか、正確に行われているかなどを検査し、たくさんの人員を必要とする仕事でした。しかし、現在では飲料水は99%整備され、92%は既に、浄水装置にも繋がれているということで、これから当庁の人員が整備されている事になります。

(4) 整備予算
1992年、2002年に大きな洪水が発生してしまって、州議会により20年計画が立てられ、毎年1億2,000万ユーロ洪水防護のために使っています。この1億2,000万ユーロの洪水防護予算は、主に約9,000kmの第一級、第二級の河川に使われています。50,000kmの小さい第三級河川については市町村が負担します。

(5) 農地転用
20年来バイエルンでは、農地を別の例えば草地とかに変えてきております。というのも、農業生産が過剰になっているからです。1953年には50%の食品を輸入しなければならず、このため農業を促進してきました。耕地を灌溉したり、色んな方法で農業が行われるようにしてきました。もちろん、馬からトラクターに代わり、肥料や農薬を使い出すとか、新しい種を使うという事によりまして、農業生産量が増えてきた訳です。
しかしその後、EUとの関係で2,000万トンのバターが全然出荷できなくて、農家に放置してあったような状況が起こりました。それで1975年には農業生産量を減らすため農地転用を進めました。

その頃から河川沿岸付近の土地を州が買い取って、再自然化することができるようになってきた訳です。私達の目的の一つは大きな河川の沿岸一帯を州の所有物にする事です。州がその所有者であれば、例えばその一部を農家が持っている場合とは違った維持または整備ができます。
【財団】川の沿岸域を州政府が買い取る用地について、それはどれくらいの距離でしょうか？
【水管理庁】州政府が今までに買った沿岸帯ですけども、8,000kmの沿岸帯を買いています。川からの幅は、バラバラですが、大きなドナウ川ですねと40～50mという事もありますし、小さな川河川ですと3～4mという事もあります。
しかし、そろそろ、元々農家が所有した土地ですが、もう農業用に使っていないので、農家は非常に安価に州に売ります。これは、農家の財政状況によるとところが大きく、州民の1.5%が農業をおこなっている訳ですけれども、財政状態が非常に悪い訳です。ですから、その地面をよろこんで売ってくれます。

(6) 土地所有者と管理

法律で所有者がその河川の維持をしなければいけないと決まっております。
この沿岸は、農家の個人所有地となっていることもありますね。しかし、河川自体は公共所有になりますので放置できません。このため大きな河川は、州がその維持・整備をすることが決められています。小さい河川の場合は市町村が担当します。
これは、歴史的にこういう風になってきました。1850年頃では河川の整備・維持をするという事は、非常に大変な事だったので、その時代から、国が整備・維持しなければいけない事を持ってきた訳です。
ただ、ヨーロッパでも違う国もありますね。例えばスイスではライン川などの大きな河川は市町村の所有物となっています。スイスの市町村は、その部分の所有権を州や国に渡すのを拒否しております。というのも、こちらの河川で作られた発電などのエネルギー収入が、その市町村に入ることです。
先ほど、洪水防護というお話しましたが、維持をするのもこちらの義務になっております。例えば、堤防が壊れたりした場合には、こちらで、修理しなければいけません。堤防組合は、北の方にはありますが、こちらの方はありません。ですから、北の方では、その堤防組合が行っている様な事も、こちらでは当庁課が行います。
レーベンスブルクとかヴュルツブルクとか、そういう所では州が堤防を造り、市町村は予算という形で参加します。負担額は市町村の財政状況に応じて30％か40％を市町村が負担するという形になっております。
これらの計画というのは、かなり短い期間などで出来上がる訳ですが、その後、その堤防の高さを何mにしようかという事になりますと、市民が出てきまして、ああだこうだという事になりまして、いつまでも絞っても決まりません。また、歴史的都市の場合は、国の文化財保護などを受けてている事などがありますので、堤防によって、その町を河川から遮断しまわないようにする必要があります。このため歴史を持つ都市で、堤防を造るというのは非常に複雑で時間がかかる仕事です。
(7) 治水安全度
【財団】堤防の余裕高はどのくらいですか？
【水管理庁】100 年確率水位で 1m とされています。それに、あと 1m 見ると 1000 年に 1 度来るような大きな洪水からも守ることができます。

(8) 災害保険について
洪水など何か被害が起きた場合、被害者は例えば堤防整備に反対した人に対して、どういうことをしたら自分の損害費用が賄えるかという事で、いつも裁判が起こります。バイエルン州では各家庭において、洪水に対する保険は義務になっていますが、火災保険には入らなければいけないとなっています。隣の州のバーデン・ヴュルテンベルク州では、各家庭は、洪水に対する保険に入らなければならないとなっています。
【財団】義務なんですか。
【水管理庁】はい、そうです。バーデン・ヴュルテンベルク州では、谷に住んでいようと、山に住んでいようと、どこに住んでいようとも、みんな洪水に対する保険に入らなければならない義務付けられています。ですから、多くの人が払うので一人あたりの掛け金が非常に低く抑えられます。洪水が起きた場合は、洪水の災害被災者に保険金が支払われる約です。このような保険は 8 年前からできました。それは、暴風雨やあられとか洪水をまとめて保険になります。
【財団】保険を義務化しているということは、法律でそういうものを決めるとはなかなか義務化にはならないと思います。日本では、任意保険のため義務化していないです。義務化しようとすると、かなり反対にあって、なかなかできない事です。バーデン・ヴュルテンベルク州ではどういう事情があったんですか？
【水管理庁】バーデン・ヴュルテンベルク州でどのようにして決まったのかという事について、詳しくは知らないですが、法的に決まっているという事です。ドイツにおいては火災保険は義務化されていますが、洪水保険に関しては、原則として日本と同じように任意になっています。

(9) 災害危険地域への対応
昔は、河川近くの建物の場合は地下室を作らず、1 階は例えばガレージですかとか、住居として重要じゃない部分として利用していました。しかし、今では、利用目的が多様化してきて、地下室に娯楽室なんかを作りまして、コンピューターを地下室に置いたりしていますので、洪水が起こりますと大きな損害が起こる訳です。
このため、建築指導計画書で洪水が起こる地域には建築を許可しないとなっています。これまで、洪水の危険のある地域は時価が安かったため、そこに建築した方々が非常に多かったのです。
洪水災害について予測をする事で、住民が早めに避難できるようになっています。災害予報はインターネットで見られるようになっております。今年の夏から、河川水位の予測を始めまして、この予測結果をインターネットで公開し、住民が避難しなければいけないとか、まだ大丈夫だとかの判断材料となっています。なお、レーベン・ブルクとかヴェルツブルクでは、水が上がって来るまで3日とか4日はかかります。
また、バイエルン州では、ハザードマップをインターネットで公表し、市民はそれを見れば、自分が危険地域にいるかどうかという事がわかるようになっています。

(10)再自然化後のモニタリング
再自然化について、モニタリングシステムがあるかどうかという質問を皆様から事前に受けています。モニターはもちろん行っておりまして、今日の午後見て頂く場所でも何年間もモニタリングして、その結果を見て、今後のどのようにすべきかを正確に見て行きます。
【財団】モニタリング結果ですが、成功した事例はよく情報公開するんですが、失敗した事例なんてどこかで集約して、公表するシステムはあるんでしょうか？
【水管理庁】そのような公開システムはないですね。

(11)ミティゲーションについて
河川沿岸に発電所や道路、橋などを建設する場合には、環境条件というものを満たさなければいけない事になっています。環境費用が建設費用の最大20％まで必要になる可能性があります。
【財団】バイエルン州の自然保護法の第6-Aですね。
【水管理庁】はい、そうです。国が河川工事を行う場合も同様で、個人がやる場合と同じ条件を満たさなければいけません。1999年、2002年にこの州でも堤防がかなり壊れました。その後、堤防などの建設をする場合も、法律的には、民間の人と同じような法律手続きをしなければいけませんでした。建設計画は早くでき資金も準備できていましたが、法的手続きに非常に長い期間がかかりました。
例えば、堤防を作るという場合にも、ビオトープがあった場合には、ビオトープの代わりにどういうのを作るか。あるいは、ビオトープを避けるような曲がりくねった堤防を作るかなど考えますが、そういう避けてきた堤防を作ることができない場合があるので、更に難しくなってくる訳です。

(12)環境教育
ここに、学校の先生用に作った資料があります。先生はそのまま学校で生徒に見せて使
えるようになっています。あと、市町村が河川に対する市民のイメージを開くためにも使います。
【財団】先生は、この環境教育が学校教育の中で、週に1回とか、そういう時間が必要でしょうか。
【水管理庁】特に決まったものはありません。例えば、彼の奥様は小学校の先生なんでけど、だいたい10時間間河川に関する授業を行います。もうちょっと上級学校になりますと、例えば1年に2回行ですね、山歩きというのを行いまして、その時に例えば河川についての情報を先生が教えたりします。
【財団】学校教育というのは、日本の場合は、文部省と別の省庁であって、別の省庁の色々な政策の事を簡単に受け入れてくれなくて、なかなか非常に難しいんですか、どうなってるんでしょうか。
【水管理庁】それの先駆者はスイスでした。20年前に自然保護団体が、電力会社をスポンサーにして、今回のようなファイルを作りました。これは1部あたり25ユーロ位のお金がかかりました。それを私達も思い出して、文部省と一緒にこういうファイルを作りました。これは当庁が売っているものではなく、無料で差し上げています。
それではグループマイヤー（Wolfgang Grobmaier）さんから次のお話しを致します。
(13) 再自然化
私はグループマイヤーです。30年来、当水管理庁に勤務しております。河川の開発、再自然化、拡張の計画を担当しています。拡張した方をする場合に、どういう事があなたれ、どういう影響があって、それの代わりに何を行ったらいいかを見ております。拡張というのは昔でしたが、ここ10年は河川の再自然化に取り組んでおります。
昔は発電所とか洪水対策施設など、そういう物が多く作っていた訳です。30年前は、生態系を促進する方法があまりありませんでした。私達が作っていたことは、どこに木を植えるかとかその程度だった訳です。現在では、河川が将来どのような形になるかという事を、他の方と一緒に決める事ができるような権利もできてきております。
それでは、どういう方法でやるかという事を皆さんにお話しします。
バイエルン州の河川は、全長60,000kmもありますまして、先ほどカウンツェンガーさんからお話がありましたけれども、当水管理庁は、そのうちの9,000kmを整備担当しております。私達が担当するのはドイツ南部の大きな河川です。この降雨量多い南部からから北の方の乾燥した地域ですけど、それぞれの自然に合わせた河川の状況、河川のあり方というのが大きく異なっております。
ドイツでは河川の状態を評価しています。こちらの方に一例があります。（図 6.3）黄色と赤で着色した部分が悪い場所です。私達の計画は、今までの良い状態の河川を維持し、悪い状態の河川を改善・改修して行くという事です。ただ、都市部においては改修方法が限られ、なかなか進みません。
再自然化の考え方

今日の午後、イザー川にいらっしゃいますが、イザー川について、少しだけ説明します。これは、ミュンヘンの古い地図になります。イザー川は原始の川でした。今日のイザー川はこういう風に整備されています。こちらは都市部ですので、イザー川を再自然化する方法はあまり残ってはおりません。当時のようなら始のイザー川に戻ることは不可能です。しかし、都市部でも河川の再自然化が全くできないという訳ではないので、その例を今日の午後見ていただきたいと思います。都市部では、自然という事がひとつの大きな役割を果たし、人にとってリラックスできるというのは非常に重要です。

まず、何か改修などをする場合、昔この川はどのような形をしていたかとか、今後どのようなようになっていたら良いだろうかとかいう風に考えます。バイエルン州では、どうなってたら河川が自然なのかというのを見る事ができる場所がいくつもあります。

アルプスでは自然な河川の名残りを見る事ができます。これもイザー川ですが、200年前ではミュンヘンでもこのような形をしていた訳です。イザー川からドナウ川に合流する地点も比較的自然が残っています。

河川の移動に対しても、今日では注目しています。自然な河川は移動しなければいけないと考えています。この200年の間、河川を運河化し固定してしまいました。ですから、その川は移行する事ができませんでした。それは、小さな河川でも同じで、河川というのはすべて移動できることが必要です。都市部以外は、このような形の河川に戻したいと考えています。

私達がそれを実際どうやって行っていくかをお話しします。

最初にその河川が本来どういうタイプだったかを知ることです。これは非常に重要な事で、その河川のタイプに合った自然に戻していくという事が私の作業になります。これは、
市町村が担当する第三級河川ですが、私達は市町村にこういう小さな河川でどのような事をするべきかという事をアドバイスします。ミュンヘンなどの都市部では、人が大きな谷のある所に行って、リラックスするのを好みます。私達は、人が都市部の自然地域で保養してもらうという事を促進する訳です。

今、良い河川の例を見て頂きましたが、ここは、水力発電所が造られている所です。この区域においては、再自然化する方法はありません。ここは木を植える等なるべく自然に作るようにしました。これはアウトバーンの様にまっすぐにしてしまった場所ですが、ここにはまだ河川を再自然化する方法があります。これは小さい川ですが、こちらの近所に住んでいる住民の目的は、洪水をできるだけ早く流すという事で、河床を掘下げました。今では、こういう川の下流部の流れを早くすると、都市部の上流に住んでいる人達にとって大きな問題をもたらすという事がわかっています。

これは別の例ですが、この川はまだ自然です。ここは洪水危険地区ですが、農地として利用されています。洪水が起きると、肥料とか木が川に流れて行き河川に悪い影響を与えます。この場合の対策は簡単で、計画としてはこの土地を買い取るという事です。

ここ最近ですけど、何ヶ月前から連邦法で新しい法律ができまして、こういう地域を農地として使う事が禁止されています。しかし、これをどこまで適用できるのかは、まだわからない状態です。

(15)計画段階における考え方

今まで良い河川、悪い河川を紹介しましたが、これから水管理庁が計画段階で何をするかという事についてお話しいします。

これが良い例です。どうしたら自然に見えるかという事を考えます。現存する河川の中でそういうものがない時は、古い昔の地図を見ます。次に、今日の河川の形がどうなっているのかを見ます。先ほどお話したように、どういう形になったら良いのかを、タイプ毎に見る訳です。

悪い例は、例えば、発電所や道路があったりすると、一部にしか対策が適用できない訳です。対策が適用できるか否かが、私達にとって課題となります。これらを計画段階で考えて、実際に実行するという事です。

これは、既設堤防の堤内側に新たに堤防を作る図ですが、遊水機能を持たせるために、堤防の位置をこちらに変えて行きます。ここは、洪水時に水が流れ込むので新しいビオトープが生まれます。

【財団】古い堤防は取り払うんですか。

【水管理庁】低い所は取り外します。こちらの堤防は古いもので、状態もよくありませんので、どちらにしても改修しないといけませんので、その両方を兼ねて作業をする事ができます。

堤防の一部には、100年も昔に作られたものもあります。これから20年の間に、このよ
うな古い堤防を改修して行くという事がひとつの課題です。改修する場合は、その古い堤防を補修するだけではなく、新しく作るかどうかという事も考えなければいけません。

ここはドナウの無堤区間になります。この区間では、まだ川が自然に流れる事ができる場所です。どこに堤防を作れるか、あるいは、どこを再自然化できるか。川に任せて作る事もでき、人工的に助けてやる事もできます。この対策を行うのに、私達は、15年〜20年の期間を見込んでいます。費用は3,500万ユーロを考えています。土壌も必要です。500ha位になりますが、この500haで、洪水を抑える事ができる訳です。

(16)水利権と整備費用
イザラ川で行った工事は、費用もそれ程かかりませんでした。7.5kmの区間で405万マルク（207万ユーロ）で済みました。これは、この土地がバイエルン州の所有だったので、このように費用が少なくて済みました。もっとも、このお金も州は払う必要がありませんでした。というのも、ここに水力発電所があり、水力発電所との契約がありました。その契約は1925年に作られ、新しい許可を水力発電業者に与える時期だったので、更新契約費用によって、この費用が賄えました。

【財団】日本では水利権の契約期間がだいたい30年、バイエルン州では今の話しだと1925年からなので随分長いですね。
【水管理庁】今はドイツの方も水利権が30年〜40年なってきました。昔は100年位水利権がありました。

この堤防ですが、魚が登れませんので魚道を作ります。こういう物を作らないといけないので、水力発電業者がその費用を賄うという事も契約書の中に盛り込んでいます。営業権がなくなった場合には、こういう事ができますけれども。営業権が残っている場合には、裁判沙汰になります。こちらのドナウ川の場合には、そういう発電所がないので、州が費用を負担しなければいけません。

河川については、法によって、後からでも条件追加する事ができると決まっています。

私達は先ほど申しました様に、大きな河川の維持・整備等を行っていますが、小さな河川の再生化も行うことがあります。これは市町村にこういう風にできるよという例をお見せするためです。

(17)ドイツにおける環境意識
【財団】バイエルン州では、環境とか自然の保護という事が第一の目的になっているような気がするんですね。たぶん10年、20年前は、そうじゃなくて、まだ土地開発とか水開発の方が強かったのだと思います。1980年代以降だと思うんですが、バイエルン州の住民が、なぜその新しい方法を受け入れたのか。日本国は、まだ土地開発とか、開発意欲が強い人が多くて、なかなか環境の方が進まないのですが。
【水管理庁】バイエルンでは世界で初めて環境省ができました。それで、1980年には州民
投票で環境保護という事が、州の憲章に盛り込まれるという事が決まりました。1980 年というのは、ドイツ自体、またバイエルン州が非常に裕福な時代で、その当時の 10 の重要な問題があったのですから、1 位が安全、2 位がこの環境問題だった訳です。今日は、それが残念ながら、12 位とか 13 位まで後退しています。今は自分の職場の維持、確保が一番重要になっています。

【財団】河川の安全度を下げてまで、環境に対する工事はたぶんやってないと思ってるんですけど。どうですか？

【水管理庁】こちらでは、居住地区と非居住地区に分けています。人が住んでない所は、そこで水が溜まるようにして、都市部の居住地区が脅かされずにすむ訳です。50 年前までは、農業地区でも堤防を作って保護していた訳ですが、5 年程前に洪水が来てから、現在ではそれはもう行いません。

ハンガリーは、今年 EU に加入しました。100 万 ha の農地を他に転用します。それを、これから 5 年の間にそれを実行しなければいけません。ハンガリーでも、バイエルン州と同様の治水対策を進めています。

【財団】日本とバイエルン州を比較すると、河川の環境改善化という事に対するポテンシャルが日本に比べて非常に高いと思うんですねが、ポテンシャルが高いという事はやりやすいという事なんですね。日本もあと 10 年で人口が減り始めます。それから、農業用地、日本は殆ど水田ですが、お米が余ってきまして使わない田んぼが増えてきています。そういう意味で、バイエルン州の経験が日本でも段々適応され、できるポテンシャルがこれから増えると思います。

【水管理庁】こういう戦略的方法というのはすぐに考えるのはなく、20 年、30 年ものスパンを持って考えて行かないといけないのでです。私が学校を卒業しこちらで仕事を始めた 1972 年ですが、その頃、私のやった仕事というのは、蛇行した河川をまっすぐにしてきました。今、私の後継者がまっすぐの河川をまた蛇行させています。しかし、前の人がやった事は間違っているという風に文句を付ける事は違うと思います。

それでは、これで終わりにしたいと思います。

ありがとうございました。
6.2 イザープロジェクト

訪問機関：ミュンヘン水管理局

皆さまようこそおいで頂きました。こちらはミュンヘン水管理局です。
バイエルンには、全部で24箇所の水理庁がございます。今日、午前中に行われたのは、バイエルン州の水管理で、うちの直接上にある官庁と理解して下さい。ここはミュンヘンの水管理局で、そういう局が24箇所あります。ミュンヘン及びその周辺を含めて、200万人の人口がおりまして、こちらは、飲料水・排水設備などの管理を担当しております。

私がクラウス・アルツェットで、こちらがルドルフ・タッカーさんです。私が、この水管理局のマネージャーで、タッカーさんがイザープロジェクト(Isar川の再自然化事業)の担当者です。タッカーさんから、イザープロジェクトについてご紹介します。その後、一緒に、イーザー川の方に参ります。

今回は、皆さん多く数ではないので、ご質問があれば何時でも質問をして頂きたさいと思います。それと、このプロジェクト以外、これからお話することも意外についても、何かご質問がありましたらいつでもどうぞ。

これから、ルドルフ・タッカーさんの方から、イザープロジェクトについてお話しさい。

(1) イザープロジェクトについて

ようこそおいで頂きました。私は、建設工学を学んだ者です。
これがイーザー川で、後ろはアルプスです。後ろ（アルプス）の方は自然が残っているのがご覧頂けるかと思います。（図6.4）

これはミュンヘン市内のイーザー川です。（図6.5）上が運河でして、ここに水力発電所がありまして、運河の流量は5m³/sです。
この5m³/sを12m³/sとする計画です。

これが、工事を行う前の状況をよく表わしております。

【財団】白く見えるのは何ですか？
【水管理局】これは200m毎に約50cmの高さの床止めです。これはイーザー川が浸食するのを防ぐために必要でした。昔は砂利が多く流れていっていましたが、最近では流れにくくなったので、床止めが必要になりました。

平均の水量は40m³/s、年間の最大流量が360m³/s、計画洪水1,100m³/sに対しての整備を考えています。

図6.4 イーザー川
1940年には1,440m³/sの洪水が発生し、これまでの中で最大の洪水です。この時はアルプスにまだダムがありませんでした。1999年には854m³/sでこれも大きな洪水でした。

図6.5 ミュンヘン市内のイザー川

(2)イザー川における課題

イザーの欠陥は、1番目として洪水安全性の欠陥。2番目は自然保護の欠陥。3番目は大都市であるミュンヘン市内を流れる川に、人々の保養地としての機能の欠如という欠陥です。

これが、1番目の洪水安全性ですが、この余裕高fが少ない問題があります。（図6.6）

図6.6 余裕高不足

樹木がたくさん生え洪水時に阻害されるため、堤防を補強するか、また堤防の高さを高くする事が必要になりました。

ここは当事務所から400m位上流にある所ですが、ドイツ博物館の近くです。（図6.7）右側がメインの水流で、左側の草地の所が遊水地です。この土地は再自然化に利用する事ができます。

これは先ほど申しました、1999年の洪水時の状況ですが、これは5月です。ドイツでは雪解け水により春に洪水が起こります。この橋の上ですね、ずっと水が入っているのが見えています。（図6.8）
次に、自然保護的な欠陥です。
・ 川と草地の繋がりが欠けていた
・ 河川自体が自分で発展して行けない
・ 河床の構造がモノトーン（単一）になってしまったために、川または川の沿岸におい
tて生命の多様性がなくなってしまった
・ それによって、植生が減っていった
次は市民の保養に対する欠陥。
・ 斜面が急勾配なので人がなかなか行きにくい
・ 泳ぐには水質が良くない
・ 市街地との交通の繋がりが良くない
・ 運河の形をしていただけたために、その川全体の形が良くなかった
(3) イザープロジェクトの具体内容

イザープロジェクトについてですが、これは 80 年代の半ばから、色々なところで議論されてきました。1986 年〜1994 年までミュンヘン市とバイエルン水管理庁、ミュンヘン水管理局の内で準備をし、1995 年に作業分担を決めました。市の代表者と水管理局の代表者によって作業グループを作りました。1999 年に Marienklausensteg（地名）という場所の約 1km 区間の工事を始めました。

イザープロジェクトは全長 8km に及ぶ治水の改善と再自然化的計画です。これは、バイエルン州と、ミュンヘン市との共同のプロジェクトです。2 つの組織が関わっているため、作業部会を作る必要があります。

全費用は 2,800 万ユーロです。今までのところ、6km 弱の工事区間を 4 つの工区に分けて完了し、1,700 万ユーロの費用を使っております。2003 年から EU から 50% の財政援助を受けています。

イザープロジェクトの主な目的は、一番目として治水の安全度を改善する事。この治水という事からこのプロジェクトが生まれました。二番目が保養機能を改善する。三番目が再自然化です。(図 6.9)

これが約 1 年前の事ですが、イザー川を自然に近い形で作り直すという事で、この法面に適した種を蒔きましたので、短期間の内にこのような植生ができました。（図 6.10）ここでは広い草地があり、こういうものを、川幅を広くするという事に使う事ができました。

【財団】その場所に適した種を蒔いたということですが、植生の改変で問題になりませんか？
【水管理局】他の所で乾燥した斜面に同じような場所があり、そこから採れた種を堤防に蒔きました。ドイツでは、同じような位置、同じ状態の地面を選んで、そこに植物を作って種を採る。またそれを移した場合も、たいした意図はなく、早く成長すると言う事です。
図 6.10 再自然化の一環で創出した植生区域

これが、フラウファー地区に残るイザー川の昔からの流れが残っていた所です。（図 6.11）イザー川は、19 世紀に入るまで全長がこのような形にあったと考えています。ここにある古い絵があります。これが、北からミュンヘンを見たところです。イザー川が一番広い所で 1km の幅がありました。もちろん、昔の状態に戻す事はできませんが、できる範囲で昔の状態に戻したいと考えています。フラウファー地区の川のイメージから開発の目的を作りまして、計画しきれを実行しました。

図 6.11 昔の姿が残るフラウファー地区

工程はまず前準備をし、あと水理法手続きに入るための実行計画書を作り、そして入札を行いました。

最初にミュンヘン市内にある連邦国防省大学で河川モデルを作り、それぞれのエレメントについて実験を行いました。床止めなしとした場合や樹木による影響をシミュレートするために作った。 （図 6.12）
図 6.12 模型実験状況

模型実験を行った結果、沿岸が浸食されるだろうと予測されました。このため川幅を広げても、沿岸部には防護施設を作らなければならないと判断しました。また、河床を平らにする事によって砂利が動くことが確認され、すなわち将来蛇行をする事ができるだろうと判断しました。

左は元の状態です。非常に真っ直ぐでした。これが古い道路です。これが運河で、これが水力発電所です。右が改修後です。川幅がどれだけ広がったかがはっきりわかっています。（図 6.13）
【財団】2 倍位ありますね。
【水管理局】最高で2倍位ですね。
図 6.13 改修前(左)と改修後(右)
個々の対策ですがこちらが遊水地です。こちらは遊水地を深くするか、川幅を広げるかは、その川の状態によって決定しました。このケースでは堤防を高くしました。その結果、1,100m³/s の時に余裕高さ 1m を得る事ができました。（図 6.14）

図 6.14 改修メニュー
これが工事状況です。ここは川幅を広げた所です。（図 6.15）

図 6.15 工事状況
(4) 護岸のタイプ

イザープロジェクトの特徴として護岸のタイプがあげられます。1番目が見えないタイプ。2番目が見えるタイプ。3番目が通常は見えないですが、洪水時には見えるタイプです。これが1番目です。これが隠し護岸です。（図6.16）

これが2番目の護岸が外側に露出するタイプです。（図6.17）

これが3番目ですけれども。この台形状の部分は掘削して石を入れます。洪水時にこの部分（高水敷）が浸食しましたら、石がこういう風に落ちてき、そこでバリケードになります。（図6.18）

【財団】その2mはどのように決めたのですか？
【水管理】イザープロジェクトでは、最深河床高との関係でほとんど2mの高さにしています。
左が1番目の隠し護岸の工事状況です。右が洪水後の被害状況です。これが浸食された範囲です。これが隠した護岸で、右上が堤防です。この隠し護岸まで川幅は広がり、今現在は自然で美しい状態となっています。（図6.19）
【財団】川は広がったのですか。
【水管理】最高で10m広がっています。

（5）床止め工の改修
これから床止めの改修です。高さは0.5mで、魚とかが行き来できませんでした。左ような形で床止めがあった訳です。200m毎に床止めがありました。右が改修後です。0.5mあった段差を小さくしました。（図6.20）

ここの工事は、セメントとかコンクリートを全く使わないので、まず大きための砂利を敷い
て、その上に大きな石を置きました。（図 6.21）

図 6.21 床止めの改修イメージ

【財団】古い床止めを全部取り払わないと、上だけ削ったのですか？
【水管理局】高さが 1m のもありましたが、全部取り除き全く新たに作り直しました。大き目の砂利を上下流にそれぞれ 5m ずつ敷き詰めました。（図 6.22）
【財団】この黄色い部分は何ですか？
【水管理局】この黄色いところが、イザヤ川に元々ある砂利です。
この床止め改修工事では、川の流れを止めることなく工事を実施できました。
当初は問題があり補助用の堤防を作りましたが（図6.23）、これ以降は補助堤防を作らないで工事をする事にしました。これが工事後の状況です。（図6.24）

図6.24 改修後の床止め

(6) 堤防と樹木
次に堤防ですが、堤防にたくさん樹木が生えていますので、堤防が崩れるという危険があります。
これがドナウの堤防です。（図6.25、6.26）

図6.25 樹木による堤体への変状
基本的には木を抜きます。
これが1番目の方法です。木を抜いて堤防の川表側に拡幅し高くする方法です。
実際にはこのようなになります。これはミュンヘンの南の方にある田舎で、冬の状況です。
（図6.27）
【財団】堤防に盛った土は周辺にあった土ですか？
【水管理局】川幅を広げていますので、現地発生土を堤防に使いました。

これが2番目の方法で、既設堤防の前面に築堤します。川幅が広い場所ではこういうような事も可能です。（図6.28）

実際の施工状況はこういう風になります。時期が来ますと、右のように草地、緑地がで
この方法は非常にお金がかかるため、今までのところ2.5kmの区間だけ適用しました。
も堤防の上を走る事ができます。これがまだ柔らかい状態のセメントです。（図 6.32）
【財団】この方法はどのような場所に適用したのでしょうか？
【水管理局】樹林公園がある所とか、あと地下鉄の駅の近くとかです。こういう方法は、
ドイツでは主に都市部でだけ使います。

図 6.32 施工重機およびコンクリート打設状況

(7) 生態系に配慮した護岸整備
今度は環境・生態系ですが、左が古いタイプの護岸です。右が浸食された堤防で、その
後ろに見えている部分が、先ほど説明した 3 番目のタイプの護岸です。（図 6.33）

図 6.33 生態系に配慮されていない古い護岸(左)と被災した護岸状況（右）
左が工事前で、右が工事後の状況です。（図 6.34）

図 6.34 改修前(左)と改修後（右）状況
保養所としての機能の確保

保養所としての機能を保つ上で重要な事は水質を良くする事です。ミュンヘン市の上流に、紫外線の放射装置を作りまして殺菌しています。大腸菌などがそれによって大幅に減ります。図6.35

図6.35 紫外線による排水の殺菌状況

【財団】これは何の水を殺菌しているんですか？
【水管理局】浄水装置を通ってきた後の排水です。このイザーカ川に入ってくる排水にまだ菌がありますので、それをここで殺菌しています。これは、普段はこれでいい結果を今まで出ていますが、雨が多くなりますと浄化装置に入りきらず、あふれた水が直接川に流れてしまいます。

先ほど、水量を5m³/sから12m³/sにするという事をお話しましたが、12m³/sにするという事は水質を管理する上で非常に重要です。

ミュンヘン市民は、改善された川を受け入れてくれました。5月に完成したのですが、7月にはこういう風に水遊びに来る人がたくさんいました。（図6.36）

図6.36 水泳や日光浴を楽しむ市民

昔のように休暇は遠くに外に出かけて過ごすというのではなく、近所で休暇を過ごす人
多くなってきています。

(9) 合意形成について
イザープロジェクトで重要な部分は、市民も一緒に参加してもらう点です。それは色々な方法がありますが、
・ 工事現場に看板を作って情報を知らせる
・ 川の近くに住んでいる居住者を集めて集会を開く
・ それぞれの工事が始まる前に、環境団体等色々ありますので、話し合いをする
という事を必ず行っています。
それとガイドツアーです。基本的に現場を案内するという事は、ほぼ毎日のように行っています。

(10) 改修デザイン
今までの 4 つの工事区間というのは、ひとつのエンジニアオフィスに頼んでいましたが、
今は新しいアイデアを入れるという事で、公募入札することにしました。ヨーロッパ全体で入札をしました。落札者は 7 人に絞って、その方々が 3 ヶ月間自分のプランを練って、
最終的に 2003 年 4 月 3 日に案が決まりました。
1 等は、こういう真っ直ぐな河道ラインを取り入れ、イザー川を 2 つの流れに分けるという案です。こういう風に分けた方が、都市の中心にあるイザー川が、より都市部に適応していると考えました。（図 6.37）

図 6.37 選定された改修計画案
しかし問題が起こりました。市民にこの計画案が受け入れてもらえるなかったのです。市民はどちらかと言うと、こちらの方の計画案を希望しました。（図 6.38）
このような争いがあったため、この作業部会と委員会で、両方とも案をもう一度練り直し、それを市民に再提示するという事で決まりました。うまく行けば、今年のクリスマス前には、決定が下る事になります。今の考えとしては、工事区間を 3 つの工区に分けて。1
工区は1等を取った人の案、2工区は2等を取った人の案、そしてまた3工区は、また1等をとった人の案、という風になるんじゃないかと思っています。

図6.38 市民が望んだ改修計画案

【財団】市民がこの案を希望するのに、プランを練り直す理由はなんですか？
【水管理局】本当は1等を取った人の計画案が採用するはずでした。契約条件に1等がこの河川工事の案として採用されますというので、それを履行しないと州が損害賠償をしなければなりません。そういう事はしたくないからです。こういう争いのために1年間遅れています。今、一方ではその損害賠償を払わないようにする。一方では、市民の声も聞く事で、お互い納得の上の解決方法を探しているという事です。

左が建設工事の前、右が建設工事中の写真です。（図6.39）

図6.39 工事前(左)と工事中(右)の状況

左が工事後最初の冬の状況で、右が春の状況です。（図6.40）
図 6.40 工事後の最初の冬（左）と春（右）の状況
左が第3工区の工事区域です。右が完成イメージになります。（図6.41）

図 6.42 第3工区の工事区域（左）と完成イメージ（右）
最後になりますが、これが19世紀のイザー川の状況です。川幅は最小で1kmありました。また、土砂供給は1年間に150万m³ほどの玉石が運ばれていたと考えられます。

図 6.43 19世紀のイザー川の状況
以上で終わりです。どうもありがとうございました。ご質問がありましたら、どうぞ。
【財団】冒頭の説明でもありましたが、イザー川への土砂供給がなくなった理由はなんで
すか。
【水管理局】土砂が元々の 20%位になってしまっています。その理由は大きなダムに土砂を堰き止めてしまうために20%程になりました。
【財団】工事完成から時間が経ってないですが、川の形が少しずつ変わってくると思うんですが、その辺のモニタリングを行って、川が予定通りになった、ならないというプロセス管理は行われているんですか？
【水管理局】今までのものはですね、予定した通りに川が発展しているので問題ありませんが、もしもその場合は何かしないといけないだろうと考えています。

(11)再自然化の背景
【財団】このような再自然化を始めたのは、やはり市民の声・要望が一番大きかったのでしょうか？
【水管理局】予防対策としての治水対策という事と、それと生態系を良くする事が、このイザープロジェクトを始めるきっかけでした。歴史的に見ますと、ドイツの河川は、19世紀には日本にある川と同じように真っ直ぐにしてきました。大きな河川の場合は堤防があって、その周りには建物が建っていて、という様な川になりました。1990年代の初めから、河川にはもっと場所が必要であるという事がわかりました。魚とか、その魚のエサとなる微生物が、たくさん場所がある事によって川が発展しやすいという事です。あと、もひとつ、河川に場所がたくさんあれば、河川の整備費が長期的に見て少なくすむという事がわかった訳です。
これまで、河川は何百年もかかって、真っ直ぐにしてきたので、私達がやっている事も今すぐにどうのこうのという事ではなく、長期的な仕事と理解しています。これによって、河川の品質が良くなるという事と、再自然化という事と、あと、人間のための保養というのも良くなる。バイエルン州は、非常に人間の多そうだで、普通の人間が仕事によるストレスをたくさん抱えています。そのような時に川に行って、ストレスをなくすということができるべきです。
【財団】日本では、あまり川に出て日光浴をしたり、泳いだりというような事は行わないのですが、こちらの方は川に対する一般の方の関心が高い事と関係があるのでしょうか？
【水管理局】そうだと思います。日本の場合は、きっと沿岸帯が整備され、川というのは水を海に運ぶという技術的な手段として見られているのではないでしょうか。ただし、このイザープロジェクトで泳ぐというのは、ドイツでもバイエルン州でも特別な事で、この辺りは、浄化装置により水質が保てるという事で泳げる訳です。ドイツの他の大河川では泳ぐというのはあまりありません。
【財団】川を拝見すると、こちらもそうですが、ゴミが全く見られず、非常に気持ちいい空間になっています。元々ゴミを流すという事をされないのでしょうか？
【水管理局】川にゴミを捨てるという事もいない事ではないですけども、一般的にはゴミを
捨てのようなことはないです。
【財団】捨てたら罰則があるとか、そんな事はない訳ですね。
【水管理局】あります。バイエルン州の水収支法とか、連邦の水収支法ですね。そちらの方で河川にゴミを捨てたら罰則があります。
　これで終わりたいと思います。
【財団】ありがとうございました。
6.3 MD 送水プロジェクト

訪問機関：アンスバッハ水管理局

(1) ドナウ川流域からマイン川流域への送水プロジェクト（MD プロジェクト）

ようこそ、アンスバッハ水管理局へいらっしゃいました。当プロジェクトにつきまして少しお話します。ご質問などがありましたらいつでもどうぞ。

これまでの30年間に、このブロムバッハ湖、アルトミュール湖、ロート湖の3つの人工湖を造りました。これにより、バイエルン州が造った人工湖です。(図6.44)

(2) プロジェクトの目的

このプロジェクトの目的は3つあります。

1番目は、バイエルン州で北部の水が少なく、雨が少ない時に川を通じて水を南部のドナウ川流域から北部のマイン川流域に送っていきます。

2番目は治水で、これがアルトミュール川で、ここでドナウ川と合流します。ここは大きな洪水が起こりやすい所です。都市部、農村部に大きな被害をもたらしていました。アルトミュール川からの水を取り、アルトミュール湖に入れ、ここからブロムバッハ湖に送っています。(図6.45)

【財団】ポンプアップですか？

【水管理局】ここにはポンプ装置はなく、アルトミュール湖とブロムバッハ湖との間に4mの比高差がありますので自然流下で流れ込むようになっております。こちらがマイン川です。このドナウ川とマイン川の分水嶺の下をトンネルで通って、ブロムバッハ湖に送ります。
水が流れます。（図 6.46）

3番目は、この辺りには産業が少なく職場も少ない。この3つの人工湖付近に観光地を作りました。その結果たくさんの方が休暇を過ごしに来てくれるようになりました。ニュルンベルクからだと約1時間で到着する事ができます。ですから日曜日などに、泳ぎに来たり、あと、ボートに乗ったりされています。子供のいる家族などは、1週間とか2週間、この辺りで休暇を過ごしてくれるようになりました。

【財団】そういうものを目的にしたものは、日本ではあまりないです。

【水管理局】今日、一番重要な理由は観光になります。この3つの湖を造る事によって3,000人の職場ができました。

これは航海可能なマインドナウ運河です。この運河をパイプラインとして使います。ドナウ川から汲み上げた水は、このロート湖に溜め、雨が少ない時に、このロート湖から水を北部に流します。約1年の半分は、ロート湖から水を流しています。（図 6.47）

こちらは全く別で、アルトミューレル川からの水をアルトミューレル湖で貯えまして、さらに、ブロムバッハ湖に貯水します。ここでも、雨量が少ない時

図 6.46 アルトミューレル湖からブロムバッハ湖への送水トンネル

図 6.47 ロート湖と運河の接続部
には、川に流しています。
【財団】給水すると水が増える訳ですけど、その分マイン川沿いの発電量が増えますね。そういう事もプロジェクトの目的に入っているのですか？
【水管理局】はい。入れています。まず、揚水のために電気をひいています。マイン川流域では、たくさんの発電所を通り抜けて行きります。ここで揚水に必要な電気量よりも、あちらの発電量の方が多いです。これは、取水点からロート湖までの揚程よりも、ローと湖からバベルクまでの落差の方が大きいためです。
つまり、私達は、オーストリアまたはハンガリーから水を盗んでいることになります。ただし、ドナウ川からの取水量は、わずか1%位ですから、オーストリアとかハンガリーの国は気付かないと思います。もちろん、オーストリアと契約をきちんと結んでいます。
この運河は1993年に完成しました。まだ、できて11年の新しい運河です。運河で運ばれているのは、鉄、砂、材木、セメントとかです。

(3) ブロムバッハ湖
こちらをご覧ください。これがブロムバッハ湖です。これはダム堤体で約2kmあります。ダム内の水位は7m上下します。このために、ダム湖内にも2つダムを造りました。イーゲルバッハ湖とクライナーブロムバッハ湖です。こちらの水位は常に一定です。水位が上下するのは、このメインのダムだけです。（図6.48）
【財団】このダムは、下流に対して洪水コントロールの目的はありますか？
【水管理局】アルトミュール川に対する洪水対策はありませんが、下流にはないです。

図6.48 ブロムバッハ湖
ここは、バイエルン州が沿岸を含むこの土地を買い取りました。このため、この湖の沿岸には、個人の所有地はありません。この湖の周りに道を作り、それを私達が使っております。そして、歩行者並びに自転車も利用しています。夏に天気が良いと、非常にたくさんの人が、散歩やサイクリングをしにきます。
何箇所かに駐車場、レストラン、シャワー室、更衣室を備えた観光センターを建設しました。ホテルもあります。
【財団】誰が経営しているのですか。
【水管理局】ここにはレストランとキャンプ場、あとヨットハーバー等がありますが、この辺りの市町村で組織した目的組合がありまして、そこが営業しています。これが先ほどお話した3,000人分という事です。この湖はバイエルン州が作り、観光施設、娯楽施設は目的組合によって営業されています。

(4)合意形成
【財団】このプロジェクトですね、計画、工事段階で、地元の人達が、ほとんどポジティブだったと思うんですけども、反対の人もたぶんいると思うんですが、どうでしょうか?
【水管理局】反対の方、特にこの辺りに住んでいらした方が、ここを去らなきゃという事で反対がありました。このプロジェクトではありませんが、そういう方達にすぐに考えろと言うのではなく、何年もかけてそのプロジェクトや環境に慣れて頂きます。最終的には土地の代金の他、水利権などの莫大なお金を払っています。
【財団】エコロジストとかそういう人達がプロジェクトに対して、理解されているんですか。
【水管理局】初めはすごく懐疑的でした。自然保護団体とも30年〜35年前に、話し合いをしようと試みていた訳です。その彼らと、このプロジェクト計画を一緒に立てました。自然保護という観点において、私達が立てた計画を変える用意がありました。
ひとつの例ですけども、アルトミュール湖は1970年の計画では、技術的な湖という形で計画されました。この農家が、苦情を言いましたので、ここに予定していた運河をこちらの方に移動させました。自然保護団体からも批判を受けました。これらの話し合いによって計画を変え、良いプロジェクトになるようにしました。ですから、このプロジェクトに対する抵抗は、最終段階では少しだからありませんでした。（図6.49）
全体で30km²の土地が必要になりました。この内の1/4は自然保護に使われます。ここが

図6.49 アルトミュール湖の計画の変遷
上が当初、下が採用案
自然保護地域です。観光と自然保護を分けたという事です。自然保護地域というのは、立ち入り禁止になっている所です。それは人々からも受け入れられました。と言うのも、観光客が娯楽する場所が十分に開拓されているからです。

(5) 水質
アルトミュール湖の水質を良くするために、この地域の市町村の排水装置を全部繋ぎ、湖の下流に新しい浄水装置を作りました。費用は土地、浄水設備、ポンプ施設なども含めて全てで10億ユーロでした。

昔はそれぞれの市町村に、小さな浄水装置がありました。その浄水した水を、湖に排水されていた。新設した浄水装置で浄水された水は、湖ではなく下流の川に戻る訳です。

【財団】パネルを見ると、アルトミュール川からプロムバッハ湖に年間2500万m³の水が送られる事になっていますが、洪水の状況によって毎年送水量が変わると思うんですねけどいかがでしょうか。そうであれば、水泳とかで利用されている湖の水質とか水位は、年にによってはあまり環境が良くない時期もあるという事ですね。
【水管理局】アルトミュール湖から水を取っていいのは洪水の時だけです。このため送水量は毎年違っています。アルトミュール湖では、泳ぐための水質が確保されないという問題は発生しますが、こちらのプロムバッハ湖とロート湖ではその問題はありません。

アルトミュール湖はこちらの方から流れ出てきますが、住宅地があってその辺りには農家が多いです。このため飼料に含まれるリンとか窒素が、洪水時にこの湖に流れ込みます。その結果、藻が増え過ぎることになります。というのも、このアルトミュール湖というのは、深さが2m〜2.5mしかないので、特にそういう状況が発生します。3年前には3日間、水泳禁止にした事もあります。

【財団】そのあまり綺麗じゃない水がプロムバッハ湖に来るんですよね。
【水管理局】プロムバッハ湖の水は滞在時間が約5年です。深さも30m〜32mと比較的深いため、自浄作用が働きます。ひょっとしたら10年、20年後、また100年後に問題が起こる可能性がない訳ではないです。

(6) アルトミュール湖における生態環境への取り組み
これがアルトミュール湖です。（図6.50）ここが先ほど計画を変えたという場所です。この写真はもう15年ものです。今、現在では非常にたくさんの木が生えまして、水鳥の主要な

図6.50 アルトミュール湖に創出された湿地環境
生息場となりました。（図6.51）
ここは、立ち入り禁止になっています。ただ、のぞき見したいという興味がある方がいらっしゃいますので、ここに小さい小道を作ってしまって、この道を通ってもいい事になっています。この他は立ち入り禁止となります。年間15万人の人がここを見に来ます。ここでは、自然に対する色々な貢献しようという事で、木を植えたりしています。この草地で、蘭を植えたのですが、それはうまくいかませんでした。残念ながらその蘭は、何年後かに消えてしまいます。

(7) 堤体形状について
【財団】ブロムバッハ湖の堤体が下流部側に少しアーチ状になっていますが、日本では逆に設計するんですねけど、何か理由があるんでしょうか。（図6.52）
【水管理局】これは、景観上の理由で、真っ直ぐだとあまり美しくないという事でアーチ状にしています。別に技術的な意味合いはありません。コンクリートですと、こういう風なアーチ状になりますが、ここは、土のダムですので、アーチ状にする必要はないです。
【財団】日本では、こういう土のダムでも、アーチアクションを多少期待して、2％位上流側にアーチを付けるんです。
【水管理局】ここではそれは見込んでいません。
7 ラインラント＝ファルツ州における環境アクションプログラム

7.1 アクション・ブラウ

(1) アクション・ブラウの概要

1) ヒアリング及び現地視察内容

日 2004年10月21日～22日

ヒアリング対象：水利経済監督庁（マインツ）、同支所（トリアー）

現場視察：ライン川での沿岸帯の自然再生、農地内の小河川の自然再生箇所（マインツ）

落差工の改善、遊水地での自然再生（モーゼル川支川）

2) アクション・ブラウの概要

アクション・ブラウとは、ラインラント＝ファルツ州の環境アクションプログラムである。このプログラムの目的は、州全体で河川の状態を自然に近い状態に回復させるところである。

ラインラント＝ファルツ州では、アクション・ブラウは、良質で十分な量の飲料水を供給すること、地方自治体が実施する下水処理に次いで、重要な課題であると位置づけられている。

ブラウ（青）は河川の自然度をランク分けした図で、自然に近く、生態系が損なわれていない状態にある箇所を示す色として用いられており、この施策の特徴的な色として「アクション・ブラウ」と呼ばれている。

(2) アクション・ブラウの概要説明

皆さまが、今回のヨーロッパ視察の中で、当庁へのご視察をご計画頂いた事を、非常に光栄に思います。私は関係官庁のご招待で、1994年と1998年に日本に参りました。その時に、非常に親切におもてなしお頂きました。今回、その一部でも皆さんにお返しできればと思っております。

1994年には東京で、1995年のラインの洪水についてレクチャーをさせて頂きました。1998年は、ヨーロッパの自然再生について講演をさせて頂きました。

【財団】2002年の洪水後には日本の土木学会が中心になって調査団を派遣しましたが、河川環境管理財団もスポンサーになりまして、財団のメンバーもその調査に加わりました。

【水利経済監督庁】今日の説明でも、2002年のエルベ川の洪水についてもお話しできると思います。私の同僚をご紹介致します。リネンヴェーバーが、河川の自然再生の管理をしています。シュナイダーは、リネンヴェーバーの補助をしています。

アクション・ブラウについて、かなり情報が得られているように思いますので、皆さんが知らない事をこちらでお話しできるように、多大な努力を払わなければならないと思います。
1) ラインラント・ファルツ州について

ラインラント・ファルツ州の州都にマインツがあります。ラインラント・ファルツ州では、ドイツは連邦制となっておりまして、水利経済に関しては自治権が有ります。つまり、国は法律的な枠組みを規制しており、その枠組みの中で、州が独自に施策を進めることができます。もちろんその中で責任も伴ってきますけれど。また州には水利経済を促進するという権利と責任があります。

ラインラント・ファルツ州は、比較的小さな州でして、人口が400万人、面積は20,000km²です。水利経済につきましては、ライン川とモーゼル川のふたつの大きな川が、中心となっております。この二つの川は、昨日いらっしゃったコブレンツで合流しています。

ラインラント・ファルツ州は、ドイツの州の中で、最も森の多い州で、森林が州の面積の40%〜43%を占めています。また、この州では、ワイン用の葡萄栽培が盛んで、これは私達の誇りとしているところです。葡萄の生産が盛んなのは森が多いという特性にだけよるではなく、2000年前に古代ローマ人が、葡萄・ワインの製法を探したという事によるもので。マインツ、コブレンツ、トリアー。これはらの都市は全部この州にありますが、これらは全て2000年の歴史を持つ街です。新しい建物を建てる時や改築する時など、地下を掘る度に、昔の遺跡物が出てきます。今日いらっしゃると伺っていますトリアーは、ローマ時代の4つの内の1つの首都でした。その当時、イギリス、スペイン、フランスを、トリアーから統制していました。トリアーにいらっしゃいましたら、非常に古い古代ローマ人が作った建築物を見て頂けると思います。

2) 川づくりの変化について

歴史的なお話しさせて頂きましたけれども、これから水利経済の説明をいたします。

水利経済は最も古い文化的技術の一つでして、その基礎といえば、エジプトのナイル川、バビロニア、ユーフラテス川などに見る事ができます。水利経済というのものが、今から見れば一番長い歴史を持つと云う事実と言えます。技術的な可能性の中で、この技術は、どんどん進歩してきました。20世紀の後半には、技術的に河川や景観を形成するという事が可能になってきました。これにより、川の本当の意味まで、都市を拡張して行くというような事が起こってきました。逆に河川の領域が、非常に狭い範囲まで狭まってきたという事になる訳です。日本でも私が伺った時に見せて頂きましたが、ドイツと同じように、このような状況になっていると思います。

ドイツ、特にラインラント・ファルツ州では、80年代後半〜90年代初めにパラダイムが変わってきました。河川を技術的に征服するというのは、まわり道であったと。これ
は、治水からの観点においても、生態系においても、または、生物学的な視点においてもそうであったといえます。工事をして治水対策を行うのではなく、予備対策をとる事が重要だと考えられています。例えば洪水が起きても堤防は崩れないだろうというのでではなく、洪水が来ても堤防を流れるような、その利用方法を考えるという事です。

3) 連邦州水利研究委員会について

1993年,1995年に大きな洪水がラインで起こりました。この時に、他の州と一緒に、将来の治水対策をガイドラインとしてまとめました。1995年に発行されましたが、英語とフランス語版、日本語版があります。このガイドラインは、ラインラント・フランス州の洪水の経験をもとに、書かれたものですけれども。他の州も、これを了承しており、共同責任でこのガイドラインが完成しました。

LAWAは全州の専門委員会になります。2002年のエルベ川の大きな洪水の後に、この委員会にその調査、調査、調査が委託されました。その結果、このガイドラインの通りにやれば、よかったのだが、できていなかった。つまり、このガイドラインどおりにすすめていくことが重要であるということが確認されました。このガイドラインでは、河川を技術的に形成する事から、予備対策をするという方法での方向転換が述べられています。

4) アクション・ブラウの概要

これからお話するのが、河川の自然再生については。これも、過去に方向転換が行われましたが、基本は河川にもっとたくさんのおかげ（土地）を与えるというものです。

河川の草地がたくさんあれば、河川が自然に川をかたちにしていきます。場所があれば植物が自然に大きくなったり伸びたりする事ができるということもありますが。そういう事は、そこを利用している人達との葛藤が起きます。その葛藤をどうやって、無くして行くのが課題になります。これも皆さまが興味を持って頂いている事だと思いま

1994年に、アクション・ブラウという河川の再自然化というイニシアティブを作りました。市民に対して、今言ったような事をする意識を持ってもらうためのものです。ちょうどその時期が、市民にもちょうど届くような良い時期でした。バルザックの言葉に、「ちょうど良い時にきた時ほど、力のあるものはない」という言葉がありますが、アクション・ブラウについては、私達は、その良い時にその物を持ち出したと言えます。政治的、政治家からも、共同連盟からも、非常に共鳴を得られました。

このアクション・ブラウによって、ラインラント・フランス州が、非常に良い評価を
得られました。しかし、どこからも抵抗がなかったかということではなく、小さな街や小さな河川などでは、やはり抵抗がありまして、それをなくして行くような努力が必要でした。しかし、全体的にコンセンサスを得られましたので、強く進めていく事ができました。結果としてアクション・ブラウは成功を収めているものと言えます。

【財団】ラインラント＝ファルツ州では、河川の管理や計画の仕方が、1990年代に転換したとお話し伺いました。その転換は、州や政府の河川管理をする人達の先導的な役割が非常に大きかったと思います。立法府がそれに対して、何かそれに意思決定とか、決議するとかそういう行為はあったでしょうか。

【水利経済監督庁】法律的には変化はありませんでした。先ほど水利経済について歴史的なお話を持たれたけれども、その水利経済に関する法律というもの、河川は自然のまま保つべきであるという事が書いてあります。ですから、このアクション・ブラウは、そういう観点から見ればルーツに戻るという事でした。アクション・ブラウでは、計画を実行に移すための手段を作り考えました。

欧州水枠組み指令(2000年)の中では、法律内で河川の自然再生を促進、または要求しています。この指令では、船の航海または発電などの、特別な理由がない限り、河川の自然を再生することを要求しています。私たちが、欧州水枠組み指令の先を行ったという訳ではないけれども、アクション・ブラウにより、まず一番にやったということはできます。

(3) アクション・ブラウの詳細説明

1) ドイツの河川の概要

ドイツでは、河川を一級から三級まで分けています。ドイツの主要な河川にはライン川、ドナウ川などがあり、大きなライン川の支流マイン川が、ライン川に合流しています。ドナウ川は黒海に流れ、ライン川は北海の方に流れ出ます。私達は、ライン・マイン・ドナウ運河を作りました。この運河により、航海ができるようになりましたが、それだけではなく、動物も移動する事ができるようになりました。これにより、生態系にも変化がでてきました。

モーゼル川はライン川の支川で、小さな支流を含めて約13,000kmの河川があります。流域面積は20,000km²です。ライン川、モーゼル、ラーン川は航海可能な河川です。

2) アクション・ブラウに至る経緯

第二次世界大戦後一番大きな水利経済の課題は、飲料水の確保でした。施設が戦争で破壊されましたが、飲料水のため施設を再び整備することが課題でした。戦後、ドイツでは経済が発展しましたが、過大な発展により河川が汚染されました。この汚染が認識されましたが、70年代-90年代にかけて、河川を綺麗に保つ事をという事が課題となりました。それを解決するために、河川品質地図を作りました。これが、二番目の課題です。
図 7.1 ライン川の水質の変化

左側が 1972 年。右側が 1992 年の地図です。河川の汚染度がわかります。赤が非常に過大な汚染。青が全く汚染されていない箇所です。左側の地図で、一番下に赤の所がありますけども、これがルートヴィクサーヴェンで、BASF がある所です。右側の 1992 年の地図を見て頂きますと、赤はもうなくなっています。主に、緑の地、緑の品質の箇所が増えましたし、青箇所も増えています。

3 つ目の課題ですね、先ほどローターから説明しました「方向転換＝自然の再生」です。

ただ単に綺麗な水を、河川に流すだけではなく、河川を自然に戻すという事が重要だという事を認識しました。

図 7.2 ライン川の河川の自然度
このために自然再生地図を作る方法を開発しました。この地図を見れば、自然再生を行われたか、または自然再生を行わなければいけないかという事がわかるようになっています。赤は河川工事が行われた箇所です。青が自然ということです。11,000km の延長を 100m の区間毎に表わしています。

3) アクション・ブラウの詳細

図 7.3 アクション・ブラウの広報用パンフレット

これは、自然の再生状態を、市民・州民に良くわかってもらうために、つくったパンフレットです。これは無料で州民に配布しています。アクション・ブラウの重要な事は、州民に理解してもらうように様々な方法を行う。また、施策は常に変化していくという事も理解してもらうことです。

① アクション・ブラウの目的
可能な場所では、人の手を加えた自然ではない河川を再生するということが目的

② アクション・ブラウの 4 つの柱
アクション・ブラウにより、河川の維持に、責任を持っている市町村に援助をする。アクション・ブラウには 4 つの柱があります。
図 7.4 アクション・ブラウの 4 つの柱

1 つ目は手法の開発。
例えば河川構造の地図化などの新しい手法を開発する。それまでは、その河川の構造に対する知識がありませんでしたが、これを開発しました。

2 つ目がデータの集積

3 つ目が色々なプロジェクトがあります。ここでは、新しい手法を実験します。例えば、草地の中の新しい河床の流れについて検証します。

4 つ目が一番重要で、実行です。小河川では市町村が実行し、大河川では、州が実行します。

我々は、自然再生が素晴らしい、どういうような利点があるかという事を、知ってもらうために広報活動をしています。また、事業に対しては最高で 80%までの補助金も出すこともできます。

この中で非常に重要な視点としては、土地の買収があります。適切な土地面積がないと、河川が自然に発展する事ができません。土地が手に入れば、対策を行って、河川を自然に戻すことができます。この場合、バーサシャベルでの掘削や詳細設計どおりの施工をするのではなく、洪水の力を借りて行います。

洪水時には侵食や堆積など河道が変動しますが、事業費を節約するためにこの河道の
変動を利用します。お金を投資するのは、土地の買収ですが、この前提としては、河道の変動によって壊滅的な事態になることなく、どのように変動するかを予測できることがあります。これは、アクション・ブラウの重要な部分です。ですから、この州、都市、この官庁においても、そういう知識を得るためにプロジェクトを行います。

1994年に始めまして。これが2000年のプロジェクトの数です。

これによりアクション・ブラウが人々に受け入れられているという区間がわかります。また、多くの市町村が、プロジェクトを実行しているというのがわかります。小川の里親制度を作り、個人や学校などが、ある一定の、川や自分の区間について面倒を見るということになっています。

生態系的に言いますと、河川の自然再生を行うと、色々な生物が共同で住む生活圏がそこにいるべき魚がまた戻ってきたりします。沿岸の植生も様々なものになりまます。河川の状態が変われば変わる程、動物が戻ってき、植生も良くなっています。

先ほどローターからもお話ししましたけれど、EUの水枠組指令というものがあります。これは2000年からありますが、これも生態学的に良い状態を促進しています。その中で合意されている事は、EUの各国が2015年までに、河川の生態系を良い状態にするということです。その生態系的に良い状態というのは、動物の状態で計ります。という事は、誰にとっても構想を完成しなければいけないという事になります。生態系を良くすると、同時に治水対策としても効果が発現します。

まとめで、最後に要約致しますと、アクション・ブラウ（河川の自然再生）には3つのアドバンテージがあります。

1つ目が洪水に対する対策です。遊水効果が高まると同時に、保水力が高まります。
2つ目が生態系の状態が良くなることです。生態系にとっては非常に重要な事です。
3つ目は、レジャーと保養、それと自然保護です。
【財団】アクション・ブラウなどの仕組みで、やっている事は良くわかります。今の話しを伺うと、どちらかと言うと市町村などの河川の上流部では、やりやすい対策ですが、それが流れ込んで来る州が管理している大きな河川では、なかなか難しいと思います。それと、都市を流れてる河川については、どんな事されているのかを教えて頂きたい。

【水利経済監督庁】小河川で、生態系を良くするという目的を果たさなければいけませんが、それは、洪水の保水効果ももちろん、洪水を小河川の被害が起きないようにするもので、貯留すれば大河川の洪水を防ぐことができるということになります。

大河川でも、自然再生対策は行われています。たとえば、引堤などをして、川に（自然の営力にまかせる）場所を与える工事をしています。確かに、小河川での工事に比べて、都市でやる場合は、お金がたくさんかかります。対策の効果は全体として見ていかないといけません。取った対策は全体としてみると何かの成果をもたらします。

ライン川の場合は航路、航路ですので、様々な規制があります。護岸がある所もありますし、今日、ライン川で、一部を自然再生した所を見て頂きますけれども、大河川では、全ての区域の自然を再生するという事は不可能です。

それでも都市部におきましても、自然再生は進められています。ただ、自然の再生というよりは、皆さんの方にした形に川を作り出してもらうということです。河道は自然のままであるようにし、それによって動物が移動できるように、河道は自然のままであるべきです。ただし、十分に場所が河川にあるように、洪水には気をつけます。

この10年アクション・ブラウをやって来ていますが、非常にたくさんの方がこのアクション・ブラウに参加してくれましたが、一方で、全く参加しない人もいます。広報はやっていますが、やはり広報には限度があります。

欧州水枠組み指令により、私達の官庁並びに市町村には圧力がかかって来ると思います。これをどう促進して行くのかが課題です。例えば、利水計画を作らなければいけない事が決まっています。市町村のうち、これまでそういうものをやっていなかった所は、これからやらなければならないです。

【財団】再自然化をする時は、特に工事をするのではなくて、洪水の力に任せるというお話があったかと思いますが、その予測をこちらの組織でやって、実際の現地での作業は市町村がやることでよろしいですか。

【水利経済監督庁】予測も作業も市町村がエンジニアを雇い、計画を立て、作業もしていいます。

【財団】そうすると、この組織と市町村とはどういう関係になりますか。
【水利経済監督庁】私達は基礎的な研究をもとに、アドバイスをします。例えば、どこでこの対策が特に有効かというようなアドバイスをします。
【財団】再自然化を示した地図では、現地調査はどういった専門家の方がやられたか。またどういう基準で作成されているのか教えてほしい。
【水利経済監督庁】多くの基準があります。このようなアンケート用紙がありまして、26のパラメーターがあります。この地図を担当した人達は生物学者、地理形学者などが、用紙を持ってチェックしていきます。基準は技術屋さんにもできるような簡単なものにしています。ですから、特に専属の人でなければできないというような仕事ではないです。
【財団】事業が終わった所のモニタリングも同様の方法でやっておられるのですか。
【水利経済監督庁】はい。モニタリングもこの基準に従ってやっております。
【財団】11,000kmの地図を見せて頂きましたけども、それをどれぐらいの頻度で書き換えられておられるのか。
【水利経済監督庁】一番最初は96年に作りました。5年後に新しく作りましたが、その時は自然再生の対策が取られた所だけ対象としました。さきほどの地図を担当した人達は、特別な研修を受けました。欧州水枠組み指令によると、6年毎に地図を新しく作らなければなりません。
【財団】再自然化する時は、洪水力を使うという事ですが。そのためにどのような情報を、どのように蓄積されているのか。
【水利経済監督庁】この予測は何かのデータに基づいて行うという事ではありません。川のタイプ、こういう川はどういう風に変化するかというのを大まかに見て予測しています。洪水についての知識が必要ですし、全体についてのフィーリングが必要です。これは小さい河川に関しての事です。
大河川ですと、危険になる事もありますので、もっと注意深くしないといけません。例えば、河道内樹木によって、川の流れが変わるような河川であれば、それに戦う自然再生をすることもできるでしょうが、ライン川でしたら非常に危険でしょう。ライン川もですね、昔はその集落全体に水を被ったという事もあります。それはですね、ライン川の流れが変わったという事ですねけれども。小さい河川でしたら、こういう対策をとって良いとなっています。
(4) ラインラント・ファルツ州の治水対策（フィル氏）

私の担当は、洪水の届出義務です。これは、洪水の対策の一環です。このラインラント・ファルツ州の治水対策についてご紹介します。

このラインラント・ファルツ州の治水対策には、3つの柱があります。ひとつは自然の保水。これについては、リネンヴェーバーからご説明しました。2つ目は、技術的な治水。堤防を作るなどの治水対策です。3つ目は、洪水届出、届出サービス、洪水地域の姿勢、建築に対しての指導、保険などです。

1) ライン川の変遷について
ライン川の流域は非常に大きく、9つの国（イタリア、スイス、リヒテンシュタイン、フランス、ドイツ、ルクセンブルグ、ベルギー、オランダ）が関わります。沿川の居住地域の面積は、189,500km²ありますが、ドイツが占めるのは100,000km²になります。この州は、20,000km²です。

図 7.6 1828年のライン川上流部

1828年代です。ライン川上流はこのように固定された河道はありませんでした。自然の遊水地が大きく遊水効果が非常に大きかったと言えます。トゥラーという技術者によりこの時代にライン川を直線化しました。遊水地が小さくなり、本流から切り離されました。
図 7.7 1872 年のライン川上流部

ここで初めて本流が、わからようになりました。しかし、これでもまだ、大きな洪水が起こっても、まだ保水力がありました。

図 7.8 1963 年のライン川上流部

これが 1963 年以降の状態です。従前よりももっと、直線化され、遊水地が完全に切り離されました。また、閘門、発電所などが作られました。ライン川上流人の手が加わった事による洪水の流れに対する影響として、遊水地がなくなり、洪水到達時間が短くなったことがあげられます。

そして、そのライン川と支川の洪水ピークがぶつかることが起こるようになりました。ここでその例をご紹介します。
図 7.9 遊水地の効果

水位が、一番高くなった時に薄い青になっている範囲が、被害が起こる水位です。現在の水位の状況は赤で示されています。同じ程度の洪水でここまで高くなります。つまり、大きな被害が出ることになります。実施している保水対策はこの範囲をなくすという事が目的になります。

2) 遊水地での貯留
保水力を高めるにはふたつの方法があります。

図 7.10 遊水地の整備の２つの方法

ひとつは、制御された保水と呼んでいます。本堤防のうしろにももうひとつ堤防を作ります。大きな洪水が起きるとこの辺りに水が被ります。制御と言いましたのは、大きな堤防による水の出入りです。これを技術的な保水と呼びます（図の左側）。
ふたつ目の方法は、自然な保水です。先ほどリネンヴェーバーから、河川の上流の説明をしましたが、アクション・ブラウでは、自然の保水を目的としております。この場合も、前からあった前面の堤防の後方に新規の堤防を作り、古い堤防は取り壊します。という事は、新しい堤防は、こちらの後ろの方になる訳です。もちろん、水位によって、そこに水が貯ったり、また、乾燥したりすることになります。これを、自然の保水と呼んでいます。

図 7.11 遊水地への流入状況

これが、自然の保水の一例です。保水地域に流れているのが見えます。左側から、主、メインに流れている訳です。

図 7.12 遊水地の構造物の事例

これが、技術的な治水対策の例です。水の出口でもあり、入り口でもあるという機能を持っています。
これがあの通常のライン川ではなく、古い河道に作られた堰で、これを保水・治水対策として使われてきました。洪水が起きると、ここに中間保水をすることができます。これにより、この周りの土地の地下水の水位を下げることができます。洪水の場合は37,000,000m³まで保水できます。高さは6mまでです。

ドイツとフランスで合わせまして、226,000,000 m³の保水をしなければなりません。その内、170,000,000m³がドイツで。その中で、44,000m³がラインラント・ファルツ州です。場所でいうとバーゼルから、マンハイムまでになります。このグリーンは、もうこの対策が終了しています。他の対策は、現在進行中です。この対策が全て終了すると、洪水位を、かつてのレベルまで下げる事ができます。
これが、1999年2月の洪水におけるマッサウ地点の水位です。保水対策を行っていなければ、高い方の水位になったはずです。これは被害が起こる高さだった訳です。現在進めているライン川上流の保水対策により、水位が下の線のレベルに留まりました。ブルーになっている部分が保水力で60,000,000m³です。水位に与える効果は33cm分です。

【財団】ハイドログラフはどうやって決めているのか。
【水利経済監督庁】水位はその測定場所がありますので、そこで計測して、デジタルで保存しています。
【財団】治水対策をする時の、基本となるこういう洪水ハイドロの形をどうやって決めたのですか。
【水利経済監督庁】過去の記録を用いています。それについては、次の説明でご紹介します。
【財団】遊水地の部分というのは、たぶん土地を完全に買い取ってしまうと思いますが、普段畑になっている、洪水の時だけ水が入るということになるのでしょうか。
【水利経済監督庁】これは、州かまたは市町村が、その遊水地は買いますけども、その中の一部はまだ農業用に使われています。技術的な、技術的な保水の場合は、その遊び地は制限付きで農業が可能になっています。自然の方は、主に草地ができですので、そういう所では自然が再生された草地になります。

3) 洪水予測
それでは、次の話題につき手説明します。治水対策の重要な方に洪水情報サービスがあります。ラインラント・ファルツ州では洪水情報サービスが、サービスが1986年から始まりました。

情報サービスセンターというものがあって、その役割は診断モデルの事業、診断の公開、情報路等です。情報サービスセンターはマインツ、トリアー、コブレンツの3箇所にあります。この情報サービスの基礎は、十分にデータがある事です。水位情報はシステムによって、センターに集約されています。
もうひとつの主要な情報が降雨量です。雨の状況は降雨レーダーで観測しており、時間毎や24時間毎などの降雨量を予測しています。このようなデータに基づいて、洪水モデルを作っています。洪水のモデルは河川毎に違っています。
ライン川では、ハイドロデュナミックなモデルが使われています。

モーゼルについては降雨量モデルと、ファジーモデルと両方使われています。
ナーエ川では降雨量のモデルが使われています。
ラーン川のモデルは今作成中です。統計を基本としたモデルになると予定です。
ジーク川につきましては、ファジーロジックの目途を立てています。

洪水予測の時間単位も河川毎に異なっており、ライン川では、6 時間、24 時間、36 時間で予測しています。その支川の 4 つの河川では洪水到達時間が本川よりも早いため、予測時間は短くなっています。

4) 情報の伝達
情報、水位の情報伝達方法には 4 つの方法を使っています。
ビデオテックス、ラジオ、インターネット、携帯電話です。
ビデオテックスでは時間毎の水位と水位の予測を示しています。
ラジオで 1 時間毎に水位が放送されています。
一番大きな利用方法が、インターネットを利用したもので、降雨量の分布、予報降水
量、水位、最高水位、ハイドログラフなど様々な情報を提供しています。
携帯電話でも 1 時間毎の水位と最高水位を提供しています。

【財団】日本にも似たようなシステムはありますが、最高水位の予測はありません。
【水利経済監督庁】こちらも、いつでも可能という訳ではないのですが、最高水位の予測で
できる事が多くなってきています。過去の洪水を選んでの水位や予測なども見ることがで
きるようにになっています。
【財団】情報を提供はしていますが、例えば避難勧告などは出さないのですか。
【水利経済監督庁】こちらでは、こういう状況であって、こういうような予測があるという
事をもとに警告はします。洪水情報サービスセンターからは、常に州や市町村の災難対策
の部局にデータを提供していますので、州または市町村が、避難命令を出すかどうかは決
めます。

【財団】ハザードマップ作られておられるのか。
【水利経済監督庁】はい。作っています。
【財団】治水計画の説明があったが、どれくらいの規模の洪水に対して計画を立案されて
いるのか、あるいは過去のある洪水に対して計画されているのかですか。
【水利経済監督庁】例えば、さきほどのフランスとドイツでの洪水貯留ができれば、100 年
に 1 度起きる洪水にたいしては安全になります。ただし、堤防は 200 年確率の洪水に対応
して作られています。住宅、集落がないような所では、高い堤防を作る事ができますが、
都市部では、上流での貯留によって洪水位が下がっている（先ほどの事例では 33cm）こと
のもあって、高い堤防をつくってはいません。すべての治水対策が終ったら、もっとこの差
が大きくなるでしょう。226,000,000m² の保水地域ができれば、もっと低くする事ができる
ようになるので。下流にとっては、状況がよくなる訳です。
【財団】洪水の予測は特性曲線法などを使っているのですか。
【水利経済監督庁】こちらの地区での予想には降雨量を基本データとして使ってまいります。
【財団】降雨予測の情報は、日本では気象庁という組織が担当しますが、こちらでは、予測情報は、他の組織から情報を洪水予測に使っていますか。
【水利経済監督庁】ドイツの場合も、国の機関である、ドイチェゲターヴィーンスト、ドイツ天気予報サービスが、降雨予測をしていて、そこからデータを賃います。ラインラント・ファルツ州の降雨観測所もあります。ここで取ったデータは国の天気予報サービスに提供しています。国の天気予報網と、あとそれぞれの州に予報センター（降雨観測所）があり共同して予測しています。降雨予測には、それらの全てのデータを使っています。
【財団】日本では降雨の予想は気象庁が3時間毎に行っているのですが、日本の河川の場合は、ほとんど洪水予報に役立たない。なぜかと言うと、洪水が4,5時間で、6時間などの短い時間できてしまうからです。利根川のような大きな河川では予報ができるのですが、流域面積が200km²位の河川では、洪水予報の精度が悪く、精確な予報は難しいとされていま
【水利経済監督庁】ドイツでもライン流域の予想の方が、小さい支流なんかの予想よりもうまくいくと思います。
7.2 アクション・ブラウの具体例
(1) ナーエ川における取り組み

1) 計画の概要

ナーエ川も非常に洪水が、早く起こる河川で、自然の再生と農業を両立するためにナーエ川で特別の計画を立案しました。

約 10 年前に洪水がおこり、この洪水がナーエ計画が作られる発端となりました。どんなに被害が大きかったかという伝える新聞の記事がたくさんあります。バードクロスナーとい人口が約 80,000 人の街ですが、被害額が当時、12,000,000 マルクでした。このような小さな街だけでそれだけの負担がありました。エルベとオーダー川の洪水では被害額は90 億ユーロでした。この被害を少なくしなければいけないという事で、アクション・ブラウの示す計画を立案しました。

その目的は、ナーエ地方の治水対策を改善することです。その戦略は 5 つの点から成り立っています。
・水は浸透するべき
・河川の自然を再生する
・保水をする（堰き止める。堤防等の技術的な工事によって）
・予防をする（洪水に対する予防対策として、適した建築材料を使う、保険）

連邦では、アクションプログラム 2020 がありますが、その中で 1/3 は保水。1/3 は技術的な、技術的な物による堰き止め。1/3 は予防による洪水対策を施すとされています。このプログラムは、すでに始まっていて、これからの 15 年間、2020 年までに、この方法で治水対策を行うとしています。

ナーエ川の計画を立案・実行をするために、作業部会がつくられました。参加者は、市町村、農家、自然保護者、水理経済関係者の 4 者です。この 4 つの部分から、成り立った作業部会ですけれども、これに参加する事によって、感情的なことが色々とありますけども、そういうものをなくそうという考えです。

州は対策のコンセプトを準備しました。ナーエ川計画を実施するには、土地が必要でした。が、土地の管理は農家が行います。市町村は財政危機で、予算が厳しいため、州から補助金（負担率 80％）を出します。

先ほどのコンセプトからみると、現状での問題は、第二次大戦後に農耕地をできる限り増やそうとした事でした。そのために、湿原を乾燥させて、凸凹だった所を平坦にしたなどの行為です。例えば、保水に非常に重要な川の草地を、農耕用に変えてしまいました。
その結果、かなりの速さで水が大きな川に流れてしまうようになりました。
そこで、河川自然な機能をもう一度取り戻すこととしました。この自然の重要な機能は次の5つがあります。

・河川は、動物植物の生活圏であるべき
・ビオトープをネットワーク化する
・水を保水してまた水を返してやる。
・河川を人間の保養地としてあるべき
・よい景観を再現する

このように、人が昔失った、河川の自然の機能を再び取り戻すという事が、アクション・ブラウの理想です。

2）ナーエ川の概要

これが、ラインラント・ファルツ州、マインツ、ナーエ川の位置関係です。ナーエ川の流域面積は約4,000km²です。流域には635,000人が住んでいます。
洪水が全流域に起こると、洪水が非常に早い速度で流れる事が多いです。山岳地帯には、かなり急勾配の小河川が流れる渓谷があります。ナーエ渓谷には保水のための適地が少ないおとになります。これが、洪水により非常に大きな災害がもたらされた理由でもあります。
3) 保水の考え方

自然の保水には様々な要素があります。地表面に植物が生えている事が一番良いのは森であることです。次が土壌の状態です。雨の大きな粒は土壌に浸透します。地形も重要で、窪地になっているような所では大きな保水能力があります。また、川の縁の草地も大きな保水力を持っています。

戦後、このような自然の保水力が、人間の手で壊されました。森を壊し、草地だった所を、耕地に変えてきました。河川を直線化し、洪水が起こりえ的地方に住宅を建設し、集落地帯としてきました。上流部の山林を伐採してきました。

このようになる前の姿が、私達が取り戻す状態です。これをどのような方法で進めていくのかについて説明します。この方法はアクション・ブラウでも効果があるものです。

農家が沿川一杯まで農耕地を使っている事があります、この対策として、川の縁に衝じ帯をつくります。場に応じた土地の利用をするという事で、川の中の草地まで、農耕地として使用するべきではないと考えています。そういう所は植物が生えていて、それによって土壌が固定されるべきです。つまり、農耕地として適切でない所は、農耕地を取りやめると。昔、川の中の草地に、森林があった所がありますが、そういうものがあった所は、森林を復活させようとしています。法律によって、このような遊水地というのは、特別な保護が必要であり、集落としては使ってはいけないことになっています。

また、土壌について、どのような対策を取れば、治水への効果があるかに関する相談所があります。

私達にとって、農家、農業に関する監督官庁は非常に重要なパートナーです。これらの農業関係者が、昔から農耕地をまとめたり、そういう事をしていたので、このナーエ計画におきましても、農業関係者が非常に大きな役割を果たしています。

洪水の危険を少なくするために、保水力を高めるというのがこのナーエ計画の目的です。

これは、1世紀から19世紀、20世紀を図に表わしたものです。緑が森、その上が集落、農耕地、草地の順です。この変遷をみると、河川の長さが短くなり、森林の面積が減り、集落が大きくなっています。農業的利用が、河川の直近までできたことがわかります。これが、洪水がますます大きくなったという事に影響しています。

図 7.16 土地利用の変化と保水力の変遷

- 103 -
この土壌の中の空隙があります。この容量が重要な役割を果たしています。

図 7.17 保水力の高い土壌

4) プロジェクトの状況

ナーエ地方では、これまで数多くのプロジェクトが行われました。主なものは次のとおりです。

図 7.18 ナーエ川の各プロジェクト
・27箇所の河川の自然を再生
・41の保水プロジェクト
・河川の90kmの区間に、河川のおび帯
・240kmの区域の遊水地
・42箇所で、土壌に優しい農業（補助金が出る）
・環境に優しい農家への補助金（国が行われたのが33,000ha）
・7,700kmの区間での河川の維持計画

ナーエ計画においても、土壌に優しい農業というのが特に促進されております。42の農家が、この方法を取り入れました。

目的は、農耕地の上を流れる水を、少なくすること、そこから、表面から浸透力が良くなるという事です。年間をとおして、緑があると、浸食も少なくなります。そしてモデルとして、実施してくれた農家を広報用に使いました。

これは農家にとっても利点があり、浸食に対する保護ができます。土壌の構造が良くなるという事になります。また、耕運機で作業しないので、作業に手間がかからなくなり、栄養素を洗い流すという仕事も少なくなります。

図7.19 遊水地の計画 図7.20 遊水地への流入状況

これはナーエ川沿川の遊水地、この遊水地を拡大する事を決めました。これを法律で保護しております。30年前ですと、こういう遊水地に集落が入り込んでましたが、それによって大きな被害が起こる可能性があります。このような行為はすでに法律により禁じられています。この遊水地の使用目的は指定されていて、私達が推奨するのは、草地としての利用です。農業用としては使ってはいけないということになっています。

【財団】そこは、民間の土地のままで規制されているのですか。
【水利経済監督庁】農地として使ってはいけないというのは、まだ推奨の段階で、法律で決まっていません。なるべくなら草地として使ってほしいと。その土地は、元の持ち主のままですが、その時の市町村から、「その土地を建築用の土地に」とは触れずにいるところもあります。市町村から、それが建築用の土地としての指定がない限り、もう建物は建てることでなくなる訳です。

ナーエ計画は動き出してから 10 年経ちます。いくつものプロジェクトを実行して、多数の成功を収めています。しかし計画はまだ終わっておりません。これからも続けて投資していきます。

この数年、様々なデータが集積されたので、それを GIS で整理し、様々な知識を獲得しています。

その目的は、市町村が、その市町村担当の地域に対するデータを得ることができるということです。また、浸食の危険がある地域や、その地域にある保水の可能性のある場所を知ることができます。表面から流れ出る方法が十分にあるか、保水力が十分にあるか、土壌のタイプなどのデータを 100m 毎に評価しています。これらのデータをもとに、これからの対策の計画をたてていくことができます。ですからこのようなデータがある事で、私達官庁としては、保水対策に優位な所とか、開発に優位な所などを推奨する事ができます。

【財団】ナーエ川計画は計画されてから 10 年たっていますが、これはエンドレスの計画なのか。

【水利経済監督庁】州の関係省庁とですね、これまでのナーエ計画の収支を見ました。あと 10 年間の予定です。つまり、今ちょうど半分終わったところです。必要な対策は時間がかかる。また、これらは全て任意の対策で、あと 10 年この計画を行えば、重要である対策の 70%~80%は実行されており、今ちょうど、実り始めています。

【財団】今後管理するために、データを何年毎に更新されるのか。

【水利経済監督庁】対策を行われた所は、データを更新しています。

【財団】モニタリングをしていくということですか。

【水利経済監督庁】良い所、その対策を行われる所だけ新しいデータを取り出します。ラインラント州全体のモニタリングというような範囲の中でのモニタリングは行います。全国そういう対策を取って成果を收めるわけならば、たとえば、1 点とか点数を付けて、それで何点かかかっても、もっとこれを改善の余地があるなという事が確認取れれば、また改善対策を行います。

このデータは、ナーエ川流域だけのデータではなく、ラインラント・ファルツ州全体からのデータがこちらにあります。

【財団】土壌に優しい農業ですが、全く機械で耕やさないと聞こえたんですが、それでよ
ろしいんでしょうか。
【水利経済監督庁】耕運機は使いません。農地の上から30cm、上、真ん中、下と、それぞれの菌が居ますので、本来下に居るような菌を上に戻してやると、上の菌が下に行ったりするとまずいという事がわかりますので。それと、あと機械が、農耕地にすでにもう走っていると、それによって土壌が圧縮されて土壌中の空気がなります。これも良くないという事がわかりました。しかしこれは、全ての農家が受け入れた訳ではありません。これは改革という事でして、徐々に進めていかなければなりません。それはその栽培者にもよりまして、うまく行くものと、行かないものとがあります。
【財団】日本でも試しにやっている所がありますが、収穫量が半分位になると言われていて、よほどのやる気のある方でないとできないと聞いています。
【水利経済監督庁】それに合う種類と合わない種類のものがあります。ラインラント・フルツの場合は、中間山岳部で、元々それほど生産性の良くない所ですね。そういう所は、どれだけ手をかけるか、どれだけ肥料を使うかという事で、考慮しなくてはなりません。
ドイツでは、環境に優しい農業を取り入れたからと言って収穫が半分になるという事はありません。
（2）トリアーチ支所での取り組み

【水利経済監督庁】名前をヨアヒムグーキョと申します。
私はこの支所長をしておりまして、これから、私の、この組織についてご説明したいと思います。
今回おいで頂いた理由としては、私たちがするのアクション・ブラウに関心を持っていてあるという事で、みなさんは、2つのプロジェクトを説明させて頂いた後に、現場に見に行くという形にしたいと思います。
2つのプロジェクトのうち、1つ目は、アイフルの方の地方での少し大きなプロジェクトです。ここは、魚が往来できるようにしたという事です。もう1つのプロジェクトは自然再生事業です。洪水対策において、重要な役割を果たしています。

1）組織の概要
ではまず、組織のご説明からさせて頂きます。

図 7.21 アクション・ブラウに関わる組織

ラインラント・ファルツ州の水管理のシステムは他の州と同じように、3段階に分かれています。一番上級がこれが林業、環境及び林業省で政治的決断が下されます。専門的な事、助成・補助金の関係の決断もこのレベルで下されます。その下に2つの組織があります。1つが、水管理並びに工業の水管理ができているかの監視する所。もう1つが、専門的な事項について助言アドバイスする部署です。
図の左側の組織は、助言をするというだけで、他の所に対して何か指示を出したりするという事はできません。工業用水とかのチェックをするとかの役所ですね。こちらは、助言だけをするという。
図の右側の方の組織は構造に関する許可を与える役割もっています。北と南の管轄というように、2つに分かれています。
SGSGB は水利権に関する決定を下す役所です。我々の支所は SGG の下に置かれている役所の 1 つになります。
我々の事業について，説明します。

我々の組織の下に，その下の郡を管轄する所がありますが，これには上からの決定を実行するというだけの組織です。
GB の方はですね，下の組織を監督します。
我々の組織は SGB で，その許可を与えるという事が主であって，実行は別の組織が担当します。

下水処理，給水。これについてはそれぞれ的地方公共団体，あるいはその地方公共団体がその水に関して一緒に共同となって，組織で仕事は行われている訳です。

河川の維持管理では，小河川は地方公共団体が担当します。もう少し大きい河川の場合はディストリクト単位の組織が，モーゼル川などの大河川は州が直接維持管理に改善をします。州の行う河川の維持管理で，ルクセンブルクであるとか，国境と接している所の河川，例えば，モーゼル川などの維持管理も大きな役割の 1 つになっています。国境に接している川の所で特殊な点は契約があります。これは，ドイツがまだ存在しなかった頃プロイセンであった時に交わされた契約がありましたので，それが，その両国に接している川についての管理の取り決めをしています。これに接する川に対して何らかの措置をする時には，全てルクセンブルクとの話し合いの中で決めるという，措置を取るという事になります。この両国との関係はうまく行っておりまして，本当に機能しているというその証拠になると思います。

もう 1 つの特殊な，特記すべき点は，船，船舶の航行できる川についてです。これは，ドイツの連邦州国家としての特徴を良く表しているものです。河川に船舶が通れるようにするという事に関してその責任を持つのは，それぞれの州ではなくて，国の役割となります。そのために，これができるようにするために，国からの出先機関というものがおり，航海可能な川の拡張であるとか維持に関しては，それはその出先機関が行う事になっています。船舶の航行と関係のない川の拡張とか維持は州の方の管轄になります。

空間的にどういう区分がされているのかという事について，ご説明します。
図 7.22 水利経済の管轄範囲

これはドイツの位置、そしてドイツの中でラインラント・フルツ州が位置している地図です。その州と市の管轄、水の管理は南と北とに分かれます。ここから辺を基点にして、北と南という風に分かれています。SGBの北の方に我々は位置し、その中で支所は3つあります。1つ目はウォーターバウワー。これは東側（図の左側）にあり、この範囲は管轄しています。我々のトリアー州は、これを管轄しているのは、ダウエンと、ズィートリッヒ、と言った西側を管轄しています。

3つ目がコブレンツで、それはその2つのウォーターバウワーとトリアーとの間の地域を管轄しています。

我々がこれから現場の視察に行く所はトリアーの上、北側にあるヴィットリッヒという所で、これは郡としては、ベルンカステル・ヴィットリッヒに属します。

我々が工事するズィートリッヒなんですねけれども、モーゼル川の横側にあります。農業的に見ると非常に地面が肥えた所です。これが自然再生事業をする時にはネガティブ条件になるということもあります。
2）事業内容
それぞれのプロジェクトとの説明をする前に、我々の事業を簡単に説明させて頂きます。

図 7.23 水利経済カートフ庁の目的

我々のアクション・ブラウは 2 番目の、今説明している所の担当になります。それともう 1 つのここでやっている重要な仕事は、洪水の方の警報を出すことです。これはモーゼル川とザール川、ザウアー川の洪水の警報を出しています。これは、警報と共に予測を出します。これは特にモーゼルの方で非常に大事になっています。と言うのは、もう毎年被害が出るような洪水がモーゼル川で発生しているからです。

次に地下水の管理です。これは地下水の質、量に関するマネージメントを行います。ここで大事な事は、飲料水の安全確保です。ここでやっているのは、ミネラルウォーターの方の管理です。ドイツで作られているミネラルウォーターの 15%はここので管理がされています。有名なメーカーとしては、ゲロシュタイナーがあります。たぶん日本でも聞かれたことがあると思います。もう 1 つ水と関連の深いのは、ビールの方が関連の深いのは、ビートブルガー醸造所ですね。これはビールのメーカーです。

ビートブルガーの方の醸造場について少し説明しますと、10 年前までは、その技術的な問題から 1 ヘクトリットルのビールを作るのに、12 ヘクトリットルの水が必要でした。
現在は、その水とビールの関係が、5対1になっています。これはビットブルガー醸造所が技術開発をしたというそういう事になります。ビール成分だけではなく、設備やビンを洗浄する水が多かったのを減らしたためです。また、ビットブルガー醸造場では、トリアーの中で一番大きな下水処理場を操業しています。

それが4番目の役割は下水の処理です。これは質的に良い下水処理をするという事が大事なポイントになってきます。これには、生活用水の下水処理だけではなくて、工業用水の処理というものも含まれています。研究所があり、これがきちっと処理されていたかどうか、常時監視はされています。

もう1つの我々の仕事は、廃棄物の処理と土壌の保全です。これは土壌に含まれている汚染、昔から残留している汚染が取り除かれているかどうかということなどの監視も含まれています。

【財団】下水処理と水供給については、州ではなくて、市町村が処理をしていますが、州の政府は、下水処理と水防事業をやっていないということでよろしいですか。

【水利経済監督庁】我々は水道管とかが敷設される場合に、その草案というものを確認します。それで許可を与え、その後それが、計画どおりに施工できているかの監視をします。これが我々の、州の方の役割になります。

【財団】先ほどの維持管理について。地方河川の管理をするという組織がありました。それはどういう組織なんでしょうか。

【水利経済監督庁】それは市町村が集まって、共同団体（水利組合）を作っています。

【財団】地下水の水質を監督するためには情報が必要です。その情報は、誰が取るんですか。水質については、州の政府がチェックしてるんだと思います。日本では事業体が水質データを出して、上位の組織にと伝えるのというやり方ですが、ここではどんな、どういう風にデータを取ってるんですか。

【水利経済監督庁】研究所でチェックしているのは、下水道の水質データだけです。飲料水は地方自治体の方で自己管理しています。そのデータを元に保健所が、データを健康の面からチェックします。我々はそのデータを保健所と共有着しています。

3) アクション・ブラウの事業（堰の改築）
リーザー川はモーゼル川の重要な支流です。リーザーの全長は60km。それからアイフェル海抜550mの所を水源とし、海抜150mの箇所でモーゼル川に合流しています。リーザー川は過去に水力発電のために非常に利用されていて、約20の堰が設けられていました。

このリーザープロジェクトの中で、この堰は全て改修され、水田まで魚が全て遡上できるようになっています。それと共に、暗渠の改修も行われております。
その前にですね、ちょっと冊子であるこの地図の中で見られる、この地域の事をちょっと簡単にご説明して行きたいと思います。

冊子についてちょっと一言申し上げたいと思います。この冊子、非常に手のかかった作り方をされています。この理由は、初めてやる理想のプロジェクトを未踏の地という事で、人々の関心、地方自治体を含めた人々の関心を集めようという事で作られました。

この冊子はですね、専門的な情報、観光客向けの情報という一般に向けたわかりやすい情報も一緒にまとめられています。

リーザー川はモーゼル川と、火山地帯であるアイフェルを結ぶ、非常に重要な役割を果たしています。

今日、これからご覧に入れるのは、このズュートリッシュの、2つの改修された2つの堰です。1つ目が、北側にありますピュルガービアという所。それともう1つが、ロイミューレという。それ南側の方にあります。

これが元の堰の姿です。発電所の堰でこれはまだ稼動していても、パン屋さんに電力を供給しています。電力を供給しているために、堰を取り除く事はできません。しかし、元の姿を見てみますと、完全に魚は全然上に遡上がれないような形態になっていました。

図 7.24 改築前の魚道
図7.25 改築後の魚道

これが現在の姿です。魚が通れるような階段状の魚道が作られています。これが、機能しているという事は、私の子供がここで魚を取る事ができましたので、それで証明されていると思います。

図7.26 全面魚道タイプへの改築
これはまた別の、完全に違うタイプのものです。スペースとあと航海の関係上ですと、ここではスロープをつくることができました。スロープの真ん中の所に、水位が低くなった場合でも、魚が遡上できるような仕組みになっています。

図 7.27 図 7.28 の空中写真

スロープが機能しているという事。これが上の方から見る事ができます。一つ目の現場をご覧になるとですね、コンクリートが多様に、非常に多く使われているという事で、ちょっと失望されるかもしれません。これは、地形上やむを得ません。これが上の方から見るとですね、コンクリートが多様に、非常に多く使われているという事で、ちょっと失望されるかもしれません。これは、地形上やむを得ません。
これは最初の事例と同じタイプの物ですが、こちらはコンクリートを使わず自然な形で作り上げられた物です。
こちらの方をお見せしたかったんですが、こちらは少し離れた所もあり、長い距離を歩いて頂かないと辿り着けないという所なので、やむを得ず今回お見せする事はできません。

これらの費用ですが、2,000,000 ドイツマルク。ユーロに換算して1,000,000ユーロになります。その内、50%はEUからの補助金です。20%はその付近に点在している地方公共団体のお金です。その残りは、ラインラント・ファルツ州が出すという形になります。

【財団】堰の再自然化という事で、大きな石を使って、魚道をつくられています。この石の大きさ、配置、形というのは、水理学的に、流体学的と言った方がいいのかな。そういう検討をなさってからこういう設計をしたのか。設計の指針でこのくらいの石ならばうまくいくだろうなという事でこの設計をしたのか。そこを教えていただきたい。
【水利経済監督庁】まず一番ベースとなるガイドラインというものがあります。これは経験則に基づくものです。次ぎに魚を適上させたいのかという、魚種の選定ですね。石については掃流力によって判断する事ができます。その大きさについては、どの大きさというんではなく、石のクラスが決まっています。それより石を決めています。
【財団】石のクラス毎に、例えば流速 3m まで流されませんよとかね、5m まで流されませんよとか。そういう基準ののようなものがあるのでしょうか。
【水利経済監督庁】掃流力と限界掃流力の関係から石を選ぶています。この仕事の作業の中で一番大事になるのは、ショベルカーのオペレーターです。このショベルカーのオペレーターが何がどうなされているのかという事を、経験を踏まえた上でで、何故これをやるのかということを認識していなければなりません。オペレーターがそのように解いていれば、事業が成功したも同じです。
4) アクション・ブラウの事業（遊水地）

2つ目のプロジェクトです。ビーバーバッハシャフテンクライシュウプロジェクトと言うのが正式名称です。ビーバーバッハシャフテンクライシュウベンは、リーザー川の支流になります。ここの中流れている流域は、私が住んでいる所でもあり、そのためには今、非常に情熱を注いでいるプロジェクトでもあります。定年するまでには、このプロジェクトを、終わっているというのが私の願いです。今のところ、進捗状態は、それに向かっている所です。

現在の川底にはコンクリートが使われ、生物は住んでいませんでした。その川の構造的に、レベルが何段階かに分かれていますが、そのランクは最低のランクに位置していました。これから行く所は、再自然化された所ですが、この以前の姿とは全く違うと驚かれるだろうと思います。

遊水地となっていて、この遊水地が設けられた事によって、リーザー川流域の洪水の危険性というものが非常に低くなりました。遊水地ができる前は、3年に1回は冠水していました。理論上は、遊水池が作られたという事によって、8年に1回位しか冠水しないと考えられます。数字に表れない効果、その効果を加えると、10何年に1回位の割合でしかその冠水しないだろうと思います。

図 7.29 計画説明のパンフレット

図 7.30 過去の状況
図 7.31 現在の状況

図 7.32 将来の目指すべき姿

これは昔の姿ですね。右側を見ると解りますが、森林の状態です。これでは有機物やバクテリアが住む事ができないような構造・土壌でした。

真ん中がですね、今日の姿なんですねけども。それは伐採され。一番右は、今後あるべき姿として我々が目指している姿になります。残念ながら、ここはお見せする事ができません。と言いますのも、重装備をして行かないと行けない所だからです。

このプロジェクトは、一般に対しての PR のように行われています。

その冊子を作成するにあたってもですね、これは写真の方に 2 人の女の子が写っています。2 人がこの冊子を作りました。この冊子を作るようにプロジェクトは、若者が調査・研究するという大会がりまして、そこに出展されました。小学生を対象とした小川の里親制度をやっていますが、それを私の、我々の方とも連携してやっています。
子供を含めて、このプロジェクトに対しては、認識がされています。その皆さんから非常に多くの理解、協力を得ています。このプロジェクトについては、論文が書かれていて、学生の論文ですが、河川、水のエコロジー、生態系が、これが非常に改善されたという事が、その論文にも書かれています。

これは、このプロジェクトが理解されているという事です。昔はそれのようにいったプロジェクトに批判的であった農業従事者からも積極的にこのプロジェクトに関していて、そういうことからも理解されている事がわかります。

プロジェクトが終了した暁には、25,000,000ユーロかかるという、見通しが立っています。財政源はビットリヒ市、その周辺の市町村団体。第三者からもまた、補助金や助成金が得られないかという算段をしています。

例えば、自然保護の基金などから、そのお金を得られないかと考えています。自然保護その他の分野からもお金を取る事によってですね、水管理に出せる最大60%のお金。それまで行かなくても、他の所からもお金を取るという事ができるだろうと見ています。

【財団】この２人はどういう経緯で選ばれたのですか。
【水利経済監督庁】私どもは、色々な学校で、定期的に授業を持っています。その関係で、この２人の先生と知り合いになりまして、その先生のクラスで何かできないかという話を持ちかけられたのです。この２人の女の子は生物と化学の水質の検査などの自主研究をやっていました。

この写真が出された大会に出るという事で、先生と話をしました。理科、化学、生物という観点だけでなく、社会学的な点から何かできないかということになり、この冊子を作るように至りました。

例えば、この女の子達が行ったことは、学校でプロジェクトについて展示をし、展示をする前と後で、一般の人がどれだけ知るようになったかという、変化を調べました。

それと同じようにこのパンフレットを作った、作る前と以後。その中でのプロジェクトがどういう風に浸透して行ったかという事。その過程を彼女達は調べました。

その結果ですが、パンフレットには何ももたらさない、何の効果もないという事がわかりました。つまりパンフレットを作るという形のPRというのは有効ではないと。
その代わりに、彼女達が調べた結果では、小川の里親制度が行われているでは、そのプロジェクトについて良く知られており、協力がされている、より協力が得られるという結果が出ています。

それから得た私達の結論は、子供達にこういった自然について何かを知らしめるには、まず大人がやるしかないということです。その反対に、子供が驚くことによって、大人がさらに先に進めてくという連鎖反応もあります。何をやっているかという事を知らしめて行くという事は大事ですが、我々が重点においているのは、小学校の子供達にいかにこのプロジェクトを伝えて行くかという事です。一番伝えて楽しいのは、子供達と一緒に河川に行って、何かを教えたりするという、それが一番楽しい時です。
8.現地視察調査

我々調査団は、欧州における河川の現状（整備状況）を把握するため、主にドイツ内の河川において現地調査を行いました。調査地は、地図等より河川にできる限り近寄ることができる場所を選定しました。（図8.1）以下に、ドナウ川、マイン・ドナウ運河、レグニッツ川、マイン川における河川の状況を紹介します。またその他ドイツにおける取り組み事例を若干紹介します。

(1) ドナウ川（ドイツ／ウルム）
ウルムは、ドナウ川の上流域にある小さな街で、街の中心地には高さ161mの大聖堂があります。その大聖堂の上からドナウ川を眺めると、ドナウ川は、エンジ色の屋根が多くある街を横断しているのが見えます。（図8.2）
両岸の川沿いには、樹木が茂り、林のような中を川が流れています。（図8.3）

ドナウ川沿いには城壁があり、その城壁の天端は住民の憩いの場や散歩の場に使用されています。（図8.4,8.5）

痕跡水位を記録したものが城壁に残されていました。（図8.6）

高水敷には、自転車道、散歩道が整備され、また所々に高木が植樹され、公園が整備されています。（図8.7,8.8）
ドナウ川の水際に近づいて見ると、低水護岸（石積み）が施されており、中小洪水対策を行っていることが分かります。川の流れを目測したところ、流速は1.5m/s程度であった。（図8.9）

ドナウ川の水面では、ボートや渡せ舟が行われています。（図8.10, 8.11）

ウルムの街中にはドナウ川支川の小川があり、川と街並みとが一体となった街の景観が見られます。（図8.12）また、階段上に落差工が施されています。（図8.13）
（2）ドナウ川（ドイツ／ギュンツブルク）

ウルム市内よりドナウ川に沿って下流へと約20km移動し、ギュンツブルクにほど近い現場を視察しました。

図8.14は高水敷であり、天端には道が整備され、人や自転車や馬が通行できるようになっています。その高水敷は樹木が多く茂っていますが、道沿いは雑草が生い茂ることもなく、適切に維持管理がされているようでした。（図8.14, 8.15）

河川敷に水位計が確認され、その近くに水位標が設置されています。（図8.16, 8.17）
（3）マイン・ドナウ運河（ドイツ／バンベルク）
ここはバンベルクという小さな街で世界文化遺産にも指定されており、旧市街地は旧皇帝、大司教居城都市の歴史ある街です。また、旧市街地を流れるレグニッツ川にはリトル・ベニスとも呼ばれる風光明媚なところであります。
このマイン・ドナウ運河は、その名通り黒海に流入するドナウ川と北海に流れ出るライン川支川であるマイン川をつないでいる運河であり、ここバンベルクは運河とマイン川が合流しているところであります。
マイン・ドナウ運河は、航路としての役割ももっており、橋梁の桁には就航用標識が設置されています。
調査時にも比較的大きな貨物船が運行している状況が見られました。
河岸の根元部分には最近施工されたと思われる捨石護岸が見られました。（図8.23, 8.24）この対策の主な目的は、航路用の運河であるため船舶が運行しているときに発生する波から河岸を守ることであります。実際、現地でも波が発生していることが確認できました。

運河の高水敷には、自転車道・歩道が整備され、また種々の樹木が植樹されており住民の憩いの空間として役割をもっています。（図8.25）他の街でも見られましたが、高水敷と同様に一般道においても自転車専用道と自転車道が明確に分けており、自転車は車と同様に右側通行となっていいます。歩行者が自転車専用道を歩いていますが自転車利用者より警笛を鳴らされることがありました。

図8.26は、地元の児童が通学している状況の写真でありますが、自転車専用道であり、児童は自然
とその場所を避けて歩いているように見えます。これは、習慣付いたものでしょうか。当然のことながら、自転車利用者は右側通行を徹底していました。

日本でもこのような整備されたところが多くありますか。ここまで徹底されて利用されていないように思われます。

図 8.26
(4) レグニッツ川（ドイツ／バンベルク）

レグニッツ川には、リトル・ベニスと呼ばれる多くの観光客が訪れます。その昔は漁師の町で、川沿いには民家が張り付き直接魚を荷揚げできるような構造になっています。（図8.27,8.28）

以前、この旧市街地は多くの洪水被害があったそうで、川沿いの住民の方も「以前は度々浸水被害があった」と話していました。その洪水による水位跡が家屋の壁に数ヵ年分記録されていました。（図8.29）その後、上流部に設置された水門により洪水被害がほとんどなくなったとのことです。
図 8.30 は街中の書店に展示されていたバンベルクの古図です。現在の川の姿とほとんど変わっていないようです。橋の市庁舎とも呼ばれる旧市庁舎は今も変わらないで状況です。（図 8.31）
（5）マイン川（ドイツ／バンベルク下流）

バンベルク市近くの下流部のマイン川です。現地調査時にちょうどバンベルク内で運行していた貨物船が橋門を通過している状況が見られました。（図8.32,8.33）

図8.32 図8.33

図8.34 図8.35

図8.45では橋門下流部の河岸は土羽のように見えますが、草木で覆われた中に石積みが施工されている状況が見られます。（図8.34,8.35）
図8.36はきれいに整備された広い高水敷が見られます。また河川沿いは河畔林が確認できました。（図8.37）

図8.36
図8.37

(6) その他
その他、ドイツにおける取り組み事例を紹介します。
図8.38はミュンヘンを流れるイザール川に架かる橋梁であり、その歩道部は間伐材を使用して整備されているように思われます。
また、バイエルン州のアルトミューレでは、橋梁自体が木材でできており、周辺環境に配慮しています。（図8.39）
そのブロムバッハの展示施設棟も周辺環境と一体化するように、屋根等を多くの緑で覆っていました。（図8.40）

図8.38
9. 河川事業への取り組みを調査して

まえがきで述べたとおり、本調査では水系の管理・自然再生に関する思想的・社会経済的背景とその運営に焦点を絞った。そこで得られた知見としては、大まかに分けて以下の５点に整理される。

（1）ドナウ水系管理における国際枠組みの運営（ウィーン）

ドナウと黒海の水質・洪水・環境管理や水質事故対策を進めるため、各国政府から人材を集めたICPDRが1994年に発足して成果を上げていることがわかったが、驚くのは、国により経済力に大差がある中で、国内の産業が規制されかねないにも関わらず、１３カ国もが参加していることである。恐らく、一方的な規制でなく意見調整や技術的資金的サポートから徐々に進めていることと、EUの補助金の存在が大きいと思われる。

しかし、今後東欧経済が上向いた際の水質維持、黒海へ流入する他河川（ドニエプル川・ドン川）の水質対策、などの課題もあり、とりくみの真価が試されるのはむしろこれからであるとも言える。

また、ICPDRと関連して、水質シミュレーションの国際学術プロジェクト「ドナウプロジェクト（daNUbe Project）」にも流域内外の１７機関が協力している。多くの協力が得られていることについて、前述の東欧崩壊の他「EUから（環境保全を重視した施策に重点的に）補助金が出る（資金の５０％がEUから）」「昔から（対立はしつつも）東西を結ぶ川に沿って住民の交流があり、そのつながりがあったために自然に参加出来たのでは」、「委員会では英語で議論するので話がシンプルになり、合意しやすくなったのでは」との私見を述べられた。

（２）ドイツでの大規模公共事業の進め方とミチゲーション（アンスバッハ）

マイン−ドナウ送水プロジェクトは、①北ドイツの水不足解消と発電②ドナウ川支川のアルトミュール川の治水③雇用創出の３つを目的として約３０年かけてバイエルン州によって実施された。

我々は３つある中継ダムの１つ、ブロムバッハ湖を視察したが、雇用創出とミチゲーションを非常に重視していた。

雇用創出については、ダム湖周辺の土地も買収して道路や遊歩道、観光センター（レストラン、船着場、水浴場、シャワー施設、遊覧船）も州で建設した。民間のホテルも建ち、夏には大勢の観光客が日光浴と水浴を楽しみ、雇用はプロジェクト全体で３０００人に上るという。ニーズに合った活性化策を行えた好例ではあるが、ヨーロッパは休暇も長く観光の市場が大きいことが背景にあると思われる。

ミチゲーションについては、反対する関係者とプロジェクト開始当初（３０年前）から長い間話し合いを行い、信頼関係を築き一緒にプロジェクトを作っていたという。結果
として指摘があれば計画変更も厭わずに行うこととなり、創出した湿地を水位変動から守るためには内ダムを作ったり、立ち入り禁止区域を作るなどの対策を行っていた。日本でも同様な取り組みは始まっているが、ここまで徹底した例はないのではないか。

また、周辺一帯の再自然化が徹底されアースダム堤体は自然なアンジュレーションがついており植樹までされていたこと、堤体除草の替わりに羊に食べさせていることが興味深い。後者は日本でも可能性があるのではないか。

（3）再自然化の動機と手法（バイエルン州・ラインランド＝プファルツ州）

両州の担当者に話を聞くと、すべての再自然化事業は実は治水事業と同時に、遊水地造成や引堤等で出来たスペースを利用して行われていた。そのような事業が成り立つのは、ここ30年ほど穀物が余り出て農地価格が下落したため、高い堤防を作るより土地を買って引堤したほうが安上がりになる、という合理的理由からであった。（もちろん、治水中心だからといってそれら事業の価値はいささかも減じることはなく、治水と環境をより高次でバランスさせたすばらしい事業である。）ともすれば「ドイツでは環境のためだけに公共事業を行っている」と思いこみがちだった我々にとって、その実情を明確に知ることができたのは大きな収穫であった。土地の高い日本で同じことが出来なくても当然で、日本に合った事業をしていけばよいのである。

また水害保険や建築禁止区域など、日本では見られない治水対策の実情を知ることができた。

また、前項のブロムバッハ湖と同じく、ミュンヘン市街を流れるイザー川も観光客が多く、夏には河原に所狭しと日光浴客が並ぶとのことである。また、州としても「Guided Tour」を頻繁に行うなど、川に人を集めることを重視している。結果として川に対する関心も日本とは比べるべきほど高く、治水事業への市民からの意見も多いとのことである。

一方ラインランド＝プファルツ州では中小河川の再自然化に取り組んでいるが、やはり治水が主目的であった。また、ドナウ川と同様に、再自然化事業にEUの補助金が付くことが事業を進める力になっている。中小河川の流域はほとんどがブドウ畑などになっていて、川沿いの用地買収（遊水池兼ビオトープの造成）や土壌流出対策などを進める上で農家との連携が重要になっていた。

組織については、両州とも河川管理、農業振興、地下水管理などを同じ組織で行っており、地価下落以後は連携がうまくいっているとのことである。小河川（3級河川と称する）は市町村管理で、州はアドバイスや調査をするだけで決定権限がない。すなわち縦割りの弊害は少なく、自治体の権限委譲は伝統的に十分なされている。EU補助金がインセンティブになって施策を方向づけているようである。一方、大河川の管理は連邦交通省が行っていて、航路管理が重視されるあまり再自然化は進んでいない。
（4） 河川や運河の管理状況（ドナウ川・ライン川沿川）
視察した範囲ではドナウ川もライン川も掘り込み河道が多く、水際まで古くからの建物が建て込まれている街が多く見られた。古い煉瓦づくりの壁の所々に「〇〇〇〇（年号）Hochwasser」と過去の洪水位の記録が残っている。出水があっても流速が少しく街が破壊されない様である。また、コンクリートの護岸は全くなく、捨石が多い。また土砂供給の関係か、いわゆる裸地はなく、水面から遊歩道や森をはさんで堤内地へ直結している。洗掘箇所もなく、雑草の極端な繁茂も少なく管理状況は良好であり、川沿いに多くの人がハイキングを楽しんでいる。マイン・ドナウ運河も状況は同様である。例外は比較的上流にあたるイザー川で、真っ白な河原が特徴的である。ここは改修中で、川幅を広げて隠し護岸を設置している。

（5） 国立研究機関の概要（コブレンツ）
連邦の機関なので、連邦が管理する水路のみについて研究やアドバイス・鑑定を行っていている。水文や水質、河川生態の研究のほか、航路維持が大きなテーマとなっていた。重金属汚染対策（データ蓄積と勧告、国際組織（I K R S R）への協力）、堰による回遊魚の減少対策（魚道設置や水質改善）、深掘れや土砂堆積対策（測量、シミュレーション、対策検討（水制など））が大きな研究テーマとなっていた。
また、再自然化の目標について、「社会が負担できる範囲で行う」と答えていたのが印象的であった。ライン川の堰や発電所を取り除いてまで（航路やエネルギーの利便性を失ってまで）再自然化を行う予定はなく、少しでも良くなれば良しとする、という明快な答えに研究所や政府の自信を感じた。
あとがき

年度末の忙しい中で調査団団員の努力で本報告書が作成されました。報告のつたない点や説明不足のあること重々承知していますが、お許し願いたいと思います。最後に、われわれの訪問を快く受け入れて下さった関係機関に深謝したいと思います。

調査団一同
平成17年3月30日
【入手した資料リスト】

1) ドナウプロジェクト関連
 - DONAUHOCHWASSERSCHUTZ WIEN
 - FLOOD CONTROL ON THE DANUBE VIENNA

2) 連邦水理研究所
 - 4/2003 Veranstaltungen
 Impounded Rivers in Germany Water Management and Ecological Interactions
 Federal Institute of Hydrology

3) バイエルン州
 - Bavaria, land of water
 - Bavaria, A piece of happiness
 - Überleitung Donau－Main
 - Staasen in Bayern
 - Wasser für Franken “Die Überleitung “
 - TALSBERREN-NEUBAUAMT NÜRNBERG TNA Die Vogelwelt des Fränkischen Seenlandes
 - TALSBERREN-NEUBAUAMT NÜRNBERG TNA Kunstwerke an den Fränkischen Seen
 - Umweltkompetenz in einer Hand
 - Hochwasserhandbuch
 - WASSERRECHT BAND30
 - SOUNDERDRUCK Wasser-und Abwasserabgabegesetze mit nachgeordneten Vorschriften
 - Flusslandschaft Isar
 - Hinweise zur Deichverteidigung und Deichsicherung
 - Lernort Gewässer
 - Gemeinsam für unsere kleinen Gewässer Arbeitshilfen Teil2
 - SpektrumWasser 1 Howasser Naturereignis und Gefahr
 - SpektrumWasser 3 Wildbäche Faszination und Gefahr
 - SpektrumWasser 4 Flüsse und Bäche Lebensadern Bayerns
 - Überleitung Donau-Main
 - WASSERWIRTSCHAFT 23
 - Hochwasservorsorge in Deutschland “Lernen aus der Katastrophe 2002 im Elbegebiet”, Januar 2004 （ドイツ災害対策委員会）
 - バイエルン 陽気な南ドイツ
 - バイエルン－未来と伝統の州－

4) アクション・ブラウ関連
➢ Hochwassermeldungen in Rheinland-Pfalz
➢ Das neue Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht Rheinland-Pfalz-LUWG
➢ Leben am Strom
➢ Hochwasserrückhalt
➢ Hochwasserhandbuch
➢ Gewässer Struktur Güte 2000
➢ Das Naheprogramm Bilanz 1994-1999
➢ Wiederherstellung der ökologischen Durchgängigkeit
➢ Aktion Blau im Wittlicher Tal Bachauenkonzept Bieberbach – Schattengraben
➢ Drei große Herausforderungen der Wasserwirtschaft
➢ 長期的視野による洪水防御指針 洪水－原因と結果, LAWA－作業部会, 1995 年 5 月